

September 2011

5 lines of defence against malware

Appstore security

Appstore security

5 lines of defence against malware

About ENISA
The European Network and Information Security Agency (ENISA) is an EU agency created to advance

the functioning of the internal market. ENISA is a centre of excellence for the European Member States

and European institutions in network and information security, giving advice and recommendations

and acting as a switchboard of information for good practices. Moreover, the agency facilitates

contacts between the European institutions, the Member States and private business and industry

actors.

Contact details
Authors:

Dr. Marnix Dekker, CISA (marnix.dekker@enisa.europa.eu) and

Dr. Giles Hogben (giles.hogben@enisa.europa.eu).

Press and inquiries:

Ulf Bergstrom (ulf.bergstrom@enisa.europa.eu).

Credits
The threat analysis was performed in collaboration with the DistriNet Research Group, K.U.Leuven,

Belgium (as part of ENISA tender P/29/10/TCD), in particular: Prof. dr. Frank Piessens, Dr. Lieven

Desmet, Dr. Pieter Philippaerts, and Philippe De Ryck.

We consulted with industry experts while drafting this paper and the malware defences in particular.

We are grateful for their valuable input and comments.

 Peter Dickman, Nick Kralevich (Google)

 Nader Henein (Research in Motion)

 Kari Ti. Kostiainen, Niall Odonoghue, Timo J. Heikkinen, Mikko Saario (Nokia)

 Vinay Bansal (Cisco Systems)

Legal notice

Notice must be taken that this publication represents the views and interpretations of the authors and editors, unless stated
otherwise. This publication should not be construed to be an action of ENISA or the ENISA bodies unless adopted pursuant to the
ENISA Regulation (EC) No 460/2004 as lastly amended by Regulation (EU) No 580/2011. This publication does not necessarily
represent state-of the-art and ENISA may update it from time to time.

Third-party sources are quoted as appropriate. ENISA is not responsible for the content of the external sources including external
websites referenced in this publication.

This publication is intended for educational and information purposes only. Neither ENISA nor any person acting on its behalf is
responsible for the use that might be made of the information contained in this publication.

Reproduction is authorised provided the source is acknowledged.

© European Network and Information Security Agency (ENISA), 2011

mailto:marnix.dekker@enisa.europa.eu
mailto:giles.hogben@enisa.europa.eu
mailto:ulf.bergstrom@enisa.europa.eu
http://distrinet.cs.kuleuven.be/

Appstore security

5 lines of defence against malware

3

Executive Summary
Smartphones will outnumber PC’s by 2013 and they will be the most common device for accessing the

internet (Gartner, 2010). A key feature of smartphones is the use of appstores: managed repositories

of third party software. Apple’s appstore and Google’s Android market have hundreds of thousands of

apps, and claim billions of app downloads. Where in the past mobile phone users could just change

ringtone or wall paper, apps turn the smartphone into the digital equivalent of the Swiss army knife,

offering anything from sonic mosquito repellent to point-of-sale credit card payments.

Apps have not escaped the attention of cyber attackers. For example, in 2010 diallerware was found in

appstores for Windows Mobile phones and in 2011 malware was disguised as a popular app on the

Android appstore infecting thousands of smartphones. Still, the number of malware attacks on

smartphones pales in comparison with PCs. The large market share of PCs plays a role, but we believe

that security design choices have been instrumental in preventing smartphone malware. To

consolidate this head start, in this paper we analyse malware threats in app ecosystems and we

identify five lines of defence that protect end-users1 from malware and insecure apps:

 App review: Appstores should review apps before admitting them to the appstore. While app

review cannot be perfect, it limits the possibilities for app developers to introduce malicious,

or legitimate but insecure apps in appstores. Appstores can check apps with automatic (static

and dynamic) analysis tools. Additionally human (manual) review can be used. While scalability

is a problem with human review, this could be addressed by focussing on sensitive

functionality and by using escalation procedures.

 Reputation mechanism: Reputation of apps and app developers can help users avoid malware.

Appstores should show the reputation of apps and app developers. Second-order mechanisms

can increase reputation quality. Appstores could take into account the reputation of the same

app in other appstores. A point of concern is that most users rate apps for their functionality

and not for their security, so there should be a separate channel for security and privacy issues

(e.g. “this app works, but asks for excessive privileges at install”).

 App revocation (aka kill-switch): Smartphone platforms should support remote removal of

installed apps by appstores. Appstores should have an app revocation mechanism for malware

and insecure apps. In special cases, e.g. when malware breaks out of the app sandbox, it may

be necessary to use customized removal tools.

 Device security: Appstore defences rely on the security of the devices running the apps. The

device should install and run apps in sandboxes, to reduce the impact of malware. In the

1
 This paper is part of a number of ENISA activities around smartphone security. We have previously published a full overview

of information security risks for smartphone users. We are also working with OWASP to draft best practices for app

developers.

http://www.enisa.europa.eu/act/application-security/smartphone-security-1/app-kill-switch-the-last-line-of-defence
http://www.enisa.europa.eu/act/application-security/smartphone-security-1/app-kill-switch-the-last-line-of-defence
http://www.enisa.europa.eu/smartphonesecurity
http://www.enisa.europa.eu/smartphonesecurity
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project

Appstore security

5 lines of defence against malware

4

sandbox, apps should get only a minimal set of privileges (the principle of least privilege). The

sandbox should monitor the app inside it and allow the user to see the app’s past activity. App

revocation should uninstall the app and return the device to a pre-install state.

 Jails (or walled gardens): Smartphone (platform) vendors can restrict smartphones to apps

from one or more designated appstores only and in this way prevent drive-by download

attacks. This is commonly referred to as a jail or a walled garden. The smartphone should

either be blocked from using untrusted appstores or, for expert users, present clear warnings

about installing from untrusted sources. The approach to this issue is crucial – if users can

easily install from untrusted appstores, then it is easy for attackers to bypass the defences of

the good appstores (with drive-by download attacks e.g.). On the other hand, overly-restrictive

jails encourage users to break the jail, possibly introducing higher risks than those originally

mitigated by the jail. Jails should, for example, not be used to stifle legitimate competition.

We refer the reader to the body of this paper for details about the threat analysis (a combination of

STRIDE threat modelling and attack trees) and the five lines of defence against malware.

In conclusion, on the positive side, appstores can offer important opportunities to prevent, or reduce

the impact, of malware and insecure apps. They can provide customers with ‘vetted’ software

distribution channels, showing the reputation of apps, and operating a revocation mechanism for

malware and insecure apps.

At the same time, cyber attackers are focussing more on smartphones. They will try to sell malicious

apps directly or go after software vulnerabilities in popular apps. The stakes are high: Consumers,

government and business professionals use smartphones to store and process large amounts of

confidential and personal data. Different smartphone platforms and different app stores currently

address malware and insecure apps differently, which for consumers can be confusing. Without

overlooking the differences between the various smartphones models and appstores, we recommend

an industry-wide approach to addressing malware and insecure apps. Security teams should exchange

information about apps (analyses, reputation) and share security practices. Consumers should be

presented with clear security information about app developers and the apps they sell. A solution

could be a distributed reputation system for apps and app developers across the different appstores.

By analysing the threats and showing a baseline set of malware defences in this paper, we hope to
contribute to a more common and standardized approach to app store security, across the (booming)
smartphone industry.

Appstore security

5 lines of defence against malware

5

1. Introduction
Besides the well-known Apple Appstore and Google Android Market there are many other appstores.

For instance, Amazon opened an appstore for Android smartphones, Microsoft has one for Windows

Mobile phones, Nokia for Symbian-based smartphones, CISCO has an appstore for its tablet, and some

enterprises even created appstores for their employees. Besides appstores for smartphones there are

also other appstores, for example for social media networks (Facebook apps), for business cloud

services (Google apps), for browsers (Mozilla’s addons), and so forth. In this paper we call a set of

appstores, targeted at a specific platform, an app ecosystem (see figure below).

App ecosystem

App

developer

App

developer App

developer

App Store

User device

User device

User device

app

app

App Store

In an app ecosystem, app developers create apps, and sell or distribute them to users. An app is a

piece of software that extends the functionality of the user device (a smartphone or a browser

platform for example). The appstores receive apps from app developers and sell (or distribute) them to

users, acting as a broker. Appstores generally show the reputation of each app, for example the

number of downloads per app, the user reviews and the user votes.

In this paper we focus on the threat from malware or insecure apps in app ecosystems. We first build a

dataflow model of an app ecosystem in Section 2. The app ecosystem model is used for a STRIDE

threat analysis which is presented in Section 4. The scope of our threat analysis, assumptions about

the attackers in scope, is explained in Section 3. In Section 5 we analyse the threats using attack trees

and we identify five lines of defence.

http://tech.fortune.cnn.com/2011/06/28/your-companys-own-app-store/

Appstore security

5 lines of defence against malware

6

2. Dataflow diagram of an app ecosystem

In this section we construct a model of an app ecosystem, which we will use in Section 4 as the basis

for a STRIDE threat analysis.

2.1 Introduction to dataflow diagrams

We describe our model using a data-flow diagram2. The diagram has the following elements:

 Interactors (rectangles) generate input and consume output (to a process), e.g. humans.

 Processes (circles) perform some specific function. They take one or more inputs, and

generate one or more outputs, e.g. computer system functionality.

 Datastores (two parallel lines) are used for storing data temporarily or permanently, e.g. a file

system or a database.

 Trust boundaries3 (red dashed lines) indicate the edges of control. For example, we draw a

trust boundary between the smartphone and the appstore because the smartphone is under

control of the user, and the appstore under control of the appstore owner.

2.2 Modelling an app ecosystem

The full diagram is shown below:

 The upper left corner shows the main use cases for the app developer (I1). The app developer

can send a new app, or an update, to the acceptance check (P1), which checks whether the

app is suitable for inclusion in the appstore.

 The upper right corner shows the main use cases for the appstore controller (I2). The appstore

controller can approve apps for inclusion in the appstore (P1). After approval the app is

packaged for inclusion in the appstore (P2). Metadata is added to the app such as a

description and a list of permissions that the app needs on the user device (sometimes called a

‘manifest’). Additionally the appstore controller can revoke bad apps (P3), based on complaints

for example. Revocation removes apps from the user devices (sometimes called a ‘kill switch’).

 The lower part of the diagram shows the main use cases for the device user (I3). The device

user can browse descriptions and reputation of apps (P4). The installer (P8) requires as input

the actual app published by the appstore (P5) and approval from the device user. On

installation the apps are stored in the datastore with installed apps (D2). After installation the

device user can execute an app (P10). The device user can also submit comments and

complaints about apps, which are processed and stored in the appstore (P7).

2
 One could use STRIDE with other modelling techniques, for example UML, but data flow diagrams are most common and

support the use of tools such as the Microsoft SDL Threat Modeling Tool.

3
 Trust boundaries are not usually included in data flow diagrams, but they are used in STRIDE threat analyses; in a STRIDE

analysis the focus is on the data flows crossing trust boundaries.

Appstore security

5 lines of defence against malware

7

 To ensure that the user devices receive timely updates and revocations, there is a periodic

check (P9) for updated or revoked apps. Updates and revocations trigger the installer to install

an updated app or uninstall a revoked app.

Note that our model is only a general, simplified description of how app ecosystems work, based

on an analysis of the Android marketplace, the iPhone appstore, and the Mozilla Addons store.

I1: App

developer

I2: App store

controller

Approval of app

D1: App store

App and metadata

P5: Publish

apps

P6: Publish

updates and

revocations

App descriptions

and reputations

D2: Local apps

App

I3: Device user

App

P9: Periodic

app check

P3: Revoke

app

Revocation of app

Comment or complaint

about app

P7: Accept

comments or

complaints

App ID

New app

Approval for installation,

update, uninstallation

Updated

app

App ID of revoked

or updated app

P4: Publish

description

and reputation

of apps

P1:

Acceptance

check

P2: Package

and store app

P10: Execute

app

P8: Install,

uninstall apps

App and metadata

App name

Appstore security

5 lines of defence against malware

8

3 Attacker model

Here we set the scope of the threat analysis and define which attacks and attackers are in scope.

In this paper we assume the target of cyber attackers to be users, consumers or professionals in public

or private sector organizations, who download and install apps. We focus on attacks that introduce

malware on the device via apps or appstores4. We don’t distinguish between stand-alone malware and

malware that relies on other apps. The attackers have two intermediate technical goals:

 to get malicious code on the user device, and (if that works)

 to keep malicious code on the user device

We ignore attacks directed at app developers or appstores which have no impact on the end-user (e.g.

click-fraud, plagiarism, unfair competition). We also ignore social engineering attacks in which the user

is tricked to configure insecurely an otherwise secure app.

Remark: There are 2 layers of software on a smartphone: the OS and the apps. So there are 4

categories of malware attacks:

1. Sell or distribute a malicious app.

2. Exploit vulnerability in an existing app.

3. Sell or distribute a malicious OS

4. Exploit vulnerability in an existing OS

In this paper we mostly focus on categories more on 1 and 2. The Gemini and DroidDream attacks, seen

in 2011, are an example of the first category. The ZitMo malware is an example of the second

category5.

Selling or distributing a malicious OS (category 3) may seem to be a relatively minor threat, but there

are device users who install a custom, unofficial OS on their smartphone, for added functionality. There

is a risk that malicious operating systems are distributed: users should review the reputation of such

operating systems carefully. Exploits of OS vulnerabilities (category 4) have been the dominant vector

for attacks on PC’s in the past decade. For protecting against OS exploits we refer the reader to a

literature survey by D. Gollmann.

4
 It should be stressed that information security risks do not only come from malware alone. Even authentic, vetted apps can

lead to data leaks, for example voice to text conversion software that uploads audio for processing. For corporate users such

apps may expose sensitive customer data.

5
 Exploits of third-party software have become the dominant problem for PCs as well: For example, according to Symantec

more than half of the web-based attacks in 2010 exploit flaws in Adobe software (either the plugin or supporting libraries).

http://www.enisa.europa.eu/act/application-security/smartphone-security-1/app-kill-switch-the-last-line-of-defence
http://securityblog.s21sec.com/2010/09/zeus-mitmo-man-in-mobile-i.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-EHEP001653.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-EHEP001653.html

Appstore security

5 lines of defence against malware

9

4. STRIDE Threat analysis

In this section we show the result of the STRIDE threat analysis on the app ecosystem model.

4.1 Introduction to STRIDE

STRIDE categorizes threats into six types6:

 Spoofing threats: a process or an interactor pretends to be someone/thing else.

 Tampering threats: a process, a data flow, or a datastore is changed.

 Repudiation threats: evidence of an action by a process or an interactor disappears.

 Information disclosure threats: a process, a dataflow, or a datastore reveals sensitive data.

 Denial of service threats: a data flow, a datastore, or a process is overloaded, rendering

normal use impossible.

 Elevation of privilege threats: a process is used to perform unauthorized actions.

The 6 threat types apply to different elements in a dataflow model, as follows.

 Spoofing Tampering

Repudiation

Information

disclosure

Denial of

service

Elevation of

privilege

Data flows x x x

Datastores x x x

Processes x x x x x x

Interactors x x

The focus of the STRIDE analysis is on threats which cross trust-boundaries in the dataflow model.

4.2 STRIDE threat analysis on the trust boundaries

Our model has 3 interactors, 10 processes, 2 datastores, and 20 dataflows, so the full STRIDE sweep

gives 132 threats. We enumerate all the (61) threats on the trust boundaries first. Threats considered

marginal to the scope of this paper are included for the sake of completeness, but typeset in grey.

Element Type Threat description

App developer (I1) S

R

T1 App developer is impersonated (spoofed) by an attacker and (in his name)
submits a malicious app.

T2 Attacker submits a malicious app, and denies this later.

Dataflows beteen app
developer (I1) and the
appstore (P1).

T
I

T3 Attacker tampers with an app or an update, adding malicious code to it. .
T4 Attacker learns sensitive information, for example authentication

credentials of the app developer.
T5 Attacker denies app developers to submit apps or updates by overloading

6
 STRIDE includes only technical threats, resulting from design flaws or bugs, and not non-technical threats such as bribery.

Appstore security

5 lines of defence against malware

10

D the acceptance check with many apps.

Acceptance check (P1) S

T
R
I

D

E

T6 Attacker spoofs the acceptance check, and gets the developer to reveal
authentication credentials.

T7 Attacker gets a malicious app past the acceptance check.
T8 Appstore denies having received an app or an update for acceptance.
T9 Attacker learns sensitive information about the appstore or other app

developers from the acceptance check.
T10 Attacker denies app developers to submit apps or updates by overloading

the acceptance check with many apps.
T11 Attacker approves a malicious app or submits an app on behalf of someone

else.

Interactor I3 (Device user) S

R

T12 Attacker impersonates a device user and posts false feedback for an app or
skews download numbers for apps.

T13 Attacker repudiates having given false feedback.

Publish description and
reputation of apps (P4)

S

T

R
I

D

E

T14 Attacker spoofs the appstore interface, so users see false descriptions and
reputations of apps.

T15 Attacker tampers with the appstore interface, changing the descriptions and
reputations of apps.

T16 Attacker browses descriptions and reputations but denies this later.
T17 Attacker learns sensitive information, for example which users want to

install which apps.
T18 Attacker prevents users from browsing app descriptions by overloading the

appstore.
T19 Attacker carries out unauthorized actions, such as changing the descriptions

and reputations of apps.

Dataflow between P4 and I3:
App descriptions and
reputations

T
I
D

T20 Attacker changes the descriptions and reputations of apps.
T21 Attacker learns which users have installed which apps.
T22 Attacker prevents users from browsing app descriptions by overloading.

Publish apps (P5) S
T
R
I

D

E

T23 Attacker spoofs the appstore, so the device installs malicious apps.
T24 Attacker tampers with the appstore, so the device installs malicious apps.
T25 Attacker downloads an app for installation and denies this later.
T26 Attacker learns sensitive information from the appstore, such as which apps

are being installed on which devices.
T27 Attacker denies access to the appstore, for example to prevent devices from

downloading apps or updates for installation.
T28 Attacker carries out unauthorized actions, such as inserting additional

(malicious) apps in the store.

Dataflow between P5 and P8:
App and metadata

T
I
D

T29 Attacker tampers with the app, so the device installs a malicious app.
T30 Attacker learns which apps are installed on which devices.
T31 Attacker prevents devices from downloading apps or updates for

installation.

Publish updates and
revocations (P6)

S

T

R
I

T32 Attacker spoofs the appstore, so the device does not get all the revocations
or updates.

T33 Attacker tampers with the appstore interface, so the device does not get all
the revocations or updates.

T34 Attacker receives an update or revocation notice and denies this later.
T35 Attacker learns sensitive information from the appstore interface, such as

which apps are installed on which devices.

Appstore security

5 lines of defence against malware

11

D

E

T36 Attacker denies access to the appstore interface, for example to prevent
users from receiving updates and revocations.

T37 Attacker carries out unauthorized actions, such as changing or removing
updates or revocations.

Dataflow between P6 and P9:
App ID’s of revoked or
updated apps.

T

I
D

T38 Attacker tampers with the updates and revocations from the device, so that
the device does not receive all the updates and revocations.

T39 Attacker learns which apps are installed on which devices.
T40 Attacker prevents devices from receiving updates or revocations for

installation.

Accept comments or
complaints (P7)

S

T
R
I

D

E

T41 Attacker spoofs the appstore, so the user submits comments and complaints
in the wrong place.

T42 Attacker tampers with the appstore interface, changing or removing
complaints.

T43 Attacker submits positive feedback information and denies this later.
T44 Attacker learns sensitive information, for example which apps are installed

on which devices.
T45 Attacker prevents device users from submitting comments and complaints

by overloading the appstore with comments.
T46 Attacker carries out unauthorized actions, such as removing comments or

complaints about an app.

Dataflow between P7 and I3:
Comment or complaint about
app

T
I

D

T47 Attacker changes comments and complaints from the device user.
T48 Attacker learns sensitive information about the device users, for example

which apps are installed by which users, or personal details about device
users.

T49 Attacker prevents device users from submitting comments and complaints
by overloading the appstore with comments.

Install, uninstall apps (P8) S

T
R

I

D

E

T50 Attacker spoofs the device, for example to skew the statistics on which
users have installed which apps or updates.

T51 Attacker tampers with the installer, installing malicious apps.
T52 Attacker installs an app, denying this later on, for example to skew the

statistics on which users have installed which apps or updates.
T53 Attacker learns sensitive information about the user, for example which

device the user is carrying.
T54 Attacker overloads the installer, preventing the user from installing updates,

or uninstalling revoked apps.
T55 Attacker carries out unauthorized actions, such as installing malicious apps

and rootkits.

Periodic app check (P9) S

T
R

I

D

E

T56 Attacker spoofs a user device, for example to skew the statistics on which
users have received update or revocation notices.

T57 Attacker prevents a user device from receiving updates or revocations.
T58 Attacker receives an update or revocation notice, denying this later on, for

example to skew the statistics on how many users received updates or
revocations.

T59 Attacker learns sensitive information from the appstore user interface (for
example which apps are installed on which user devices).

T60 Attacker overloads the process, preventing the user device from receiving
updates and revocation information.

T61 Attacker carries out unauthorized actions, removing revocations.

Appstore security

5 lines of defence against malware

12

4.3 STRIDE analysis inside the trust boundaries

A full STRIDE threat analysis would also cover the elements and data flows inside the trust boundaries.

For example, the full STRIDE analysis also yields a spoofing attack on the Appstore controller (I2) - an

attacker impersonating the Appstore controller. For the sake of brevity, we do not elaborate all these

threats and just discuss the internal threats (within the trust boundary) to the process Execute app

(P10) because often malicious behaviour only emerges at runtime.

Element Type Threat description

Execute app (P10) S

T

R
I

D

E

T62 Attacker spoofs the execution process, so the user thinks (wrongly) that an
app is executing.

T63 Attacker tampers with the execution process, to perform malicious
functions.

T64 Attacker can run an app without leaving evidence (such as logs).
T65 Attacker learns sensitive information from the execution process, for

example about the device user, or sensitive information on the device.
T66 Attacker overloads the execution process, to prevent the user from

executing other apps.
T67 Attacker carries out unauthorized actions, such as tampering with other

apps, reading data stored by other apps, or reading sensitive information.

Appstore security

5 lines of defence against malware

13

5. Defending against the threats

The STRIDE analysis yields many different threats. To address them systematically we use attack trees -

a technique introduced by Bruce Schneier to analyse all the different ways to attack a system7.

5.1 Attack tree

An attack tree for attacking the device user with malware is shown below. The top nodes are the high-

level technical attacker goals: to get malicious code on the user device, and to keep malicious code on

the user device. In this tree we take into account both malicious apps and exploits of vulnerable apps.

We do not refine further to practical goals, such as stealing money or sensitive data. An arc denotes

conjunction (meaning that both sub goals are required to execute the attack). The threats from the

STRIDE analysis, showing how they can be used in attacks, are on the bottom of the diagram.

Exploit vulnerability
in installed app

Prevent detection
by device user

Prevent updates,
app revocation

Sell/distribute
malicious app in

appstore

Get malicious code
on the user device

Keep malicious code
on the user device

Create malicious
app

Circumvent app
review

T1 T2 T3

T4

T5

T6

T7

T18

T9

T10

T11

T12

Troll/falsify app
reputation

Bypass the appstore

T14T13

T15

T17

T19

T26

T20

T21

T22

T23

T24

T27

T28 T29

T30

T31

T32

T33

T35

T37T38 T36

T39

T40

T42

T41

T43

T45

T44

T46

T48

T47

T49

T51

T50

T52

T53

T54

T56

T55

T57

T59

T58 T60

T62

T61

T63 T64

T66T65 T67

T62

T63

T64T66T65

T67

7
 Attack trees are similar to fault trees and dependency trees which are used in industrial engineering to analyse how a system

or a structure deals with incidents or disaster.

Appstore security

5 lines of defence against malware

14

5.2 Lines of defence

In this section we identify 5 lines of defence which can be deployed to prevent malware attacks on

end-users (see below). The defence mechanisms are shown in the attack tree below.

Exploit vulnerability
in installed app

Prevent detection
by device user

Prevent updates,
app revocation

Sell/distribute
malicious app in

appstore

Get malicious code
on the user device

Keep malicious code
on the user device

Create malicious
app

Circumvent app
review

Troll/falsify app
reputation

Bypass the appstore

 J D, A D
 A

 R

 D K, D

Lines of defence:

A App review
R Reputation mechanism
K App revocation (kill-switch)
D Device security
J Jails

App review (A)

Appstores can check apps for security issues before they are distributed to end-users. As mentioned

earlier, app reviews cannot give a 100% security guarantee, but they make it harder for attackers to

introduce malware in app ecosystems.

 Automated software analysis tools: Static analysis tools can be used to inspect the source or

binary code of an app to ensure that it does not use unauthorized functionality and that it

adheres to (some of) the developer guidelines. An example would be the tool in Apple’s

submission process that checks for forbidden API calls. Alternatively, such tools can scan for

viruses or known malicious code fragments. In addition to static analysis tools, dynamic

analysis tools can be used, that will actually run the app against a number of test cases so it

can be checked and monitored for unwanted or unauthorized behaviour. An example is

Microsoft’s ‘Hopper’ tool that runs a submitted application for a number of hours and

monitors memory usage, performance, and stability. Automated tools could be set up to

trigger escalation procedures to manage resource-intensive analysis such as manual analysis

(see next bullet).

 Manual analysis: While research in software analysis is slowly pushing the boundaries of what

can be analysed automatically, there are a number of aspects that can only be checked by a

human, for example if an app is trying to spoof another app to fool the user. Scalability of

manual analysis is a point of concern for appstores. Escalation procedures and a focus on

critical functionality can be used to make manual analysis more efficient.

 Sharing analysis results: When possible, results of security analysis should be shared with

other appstores and security researchers. Appstores could also leverage the expertise of 3rd

party researchers and security companies by allowing them to bulk-download and analyse

apps.

Appstore security

5 lines of defence against malware

15

 Authentication of app developers: App developers should be securely authenticated so that

rogue app developers cannot piggy-back on the (good) reputation of other app developers. In

app ecosystems often single individuals create apps rather than large software vendors8. Apps

are not only developed in well-protected development environments. This means that

authentication of app developers becomes more important. Phishing attacks or XSS attacks to

get the credentials of app developers are a significant risk.

 Risk profiling of app developers: The appstore should monitor and create risk profiles of app

developers. New app developers, or app developers who submit unsafe or malicious apps,

should be treated with special care. Anomalous behaviour from well-known app developers

could be a sign of an attack (phishing for example).

 Continuous process: App review should be a continuous process, and appstores should

analyse apps even after they have been admitted to the appstore, for example by using more

resource-intensive analysis (manual analysis e.g.). This type of ex-post review could be

triggered by the popularity of an app (download numbers) or the reputation mechanism (see

below).

 Priority for updates: Appstores should consider priority vetting for updates to existing (and

popular) apps to allow app developers to patch vulnerabilities quickly.

Reputation mechanism (R)

A reputation mechanism for apps and app developers is important for device users to be able to avoid

insecure apps. A reputation mechanism does not give a 100% guarantee, because attackers could

invest in building up a good reputation, but it does make it harder for attackers to distribute malicious

apps.

 App track record: To allow users to make a good choice, the reputation of an app should show

the history and track record of app developers and apps, download statistics of apps, user

votes, and detailed comments and complaints from users.

 Separate security and privacy reputation: An important issue with current app reputation

systems is that users often only rate apps for their functionality. Security and privacy

information about apps should be treated separately in app store reputation mechanisms.

 Sybil attack resistance: Mechanisms should be in place to avoid attackers from creating

multiple pseudonymous identities and thereby gaining excessive influence to be able to skew

the reputation of apps (aka Sybil attack). Second-order mechanisms can be used to foil Sybil

attacks (see next bullet).

8
 Consumerisation of software development also means that software developers can more easily change names to escape a

bad reputation, and that security processes may be absent, for example patcbing processes.

Appstore security

5 lines of defence against malware

16

 Second-order reputation: Second-order reputation can prevent attacks on the reputation

scheme by giving more weight to votes from users who have a good reputation amongst other

users. This can increase scoring quality and relevance and prevent trolling and Sybil attacks.

 Anonymous feedback: Comments and complaints from device users should be anonymised

and sensitive information about device users should be removed from public feedback to

encourage honest feedback and to avoid targeted attacks that rely on which apps a device

user installed.

 Exchanging reputation information: When possible, reputation information about the same

app in other (trusted) appstores should be taken into account. To allow for such an exchange

apps should have unique identifiers and signatures to allow referencing across different

appstores.

 Permission feedback: reputation systems should allow users to give separate feedback on

specific security-relevant features such as excessive permission requests (e.g. snake game asks

for access to GPS and telephone calls).

App revocation or kill-switch (K)

Many smartphone platforms implement an app revocation mechanism, or kill-switch, which uninstalls

apps installed on user devices. App revocation can be triggered either by the app store or by the

smartphone (platform) vendor. Important aspects of app revocation mechanisms are the following.

 User communication and consent: Removing apps from user devices is a controversial subject.

Users should be informed about the reasons for the removal and, if this does not jeopardize

other users, given a chance to opt-out. There are also settings where app revocation goes

against security policy. For example in a military setting, apps may be mission-critical and the

app revocation mechanism may need to be turned off.

 Spawning: It is important to prevent a malicious app from spawning – installing difficult to

remove code – across the user device during installation or runtime. I.e. it should be possible,

by uninstalling the app to reverse all changes caused by the app. On PC’s for example attackers

often spawn malicious code in places where it is difficult to remove (rootkits). In the

DroidDream attack, the Android kill-switch could not be used because the malicious code was

outside the sandbox. In such a case, a custom removal tool may be required.

 Update frequency: Smartphone (platform) vendors should encourage users to update

frequently. Security updates should be kept small in size whenever possible, to prevent that

users with limited-bandwidth or metered internet access skip large updates.

 Detection: The reputation mechanism (see above) plays an important role because it often

provides the basis for a revocation. Comments and complaints should be monitored

Appstore security

5 lines of defence against malware

17

continuously. Apps may exhibit malicious behaviour at a specific moment (say Easter eggs), at

random intervals, or randomly across users as seen in malvertisement attacks9.

 False positives: App revocation could potentially be used to uninstall good apps from user

devices. The app revocation mechanism should only be accessible to security teams who can

base their decisions on app reviews, user reviews, complaints.

Device security (D)

Appstore defences rely for a large part on a secure implementation on the device. App sandboxes are

vital for the security of the app ecosystem because they limit what apps can do on the device10.

Important device-side security features are the following:

 Code signing: The user device should only accept apps that are signed by the right app store.

 Sandboxes: The user device should have sandboxes (or containers) for apps, so that apps are

installed and run in isolation, to reduce the impact of malware.

 Minimal set of privileges: In the sandbox, apps should have only a minimal set of privileges by

default (applying the principle of least privilege) and if an app needs additional privileges (for

example to access GPS data) this should be handled with care; either the user should be

explicitly asked for consent, or the app store should grant permission during app review. An

important issue here is that users are often not in a position to make good security decisions,

especially when asked frequently.

 Monitoring by the smartphone user: An important feature of sandboxing is monitoring of the

app inside. The device should monitor apps after they have been installed. Device users should

have the possibility of seeing reports of the activity of an app (network usage, resource usage,

and so on) to detect resource-intensive code.

 Clean slating: The device should – when triggered by the appstore or the user – uninstall the

app and return the device to a pre-install state.

Jails or walled gardens (J)

The device vendor (or the platform distributor) can restrict installation of apps to one or more trusted

appstores or warning when the user is installing apps from untrusted appstores. This is commonly

referred to as a jail or a walled garden. The approach to app installation policies (and jails in particular)

is crucial, because most of the above-mentioned defences are useless if users are quick to skip

warnings or jailbreak their devices. If it is easy to skip warnings then users are vulnerable to drive-by

download attacks – a common source of infection on PC’s. If jails are too restrictive users will try to

jailbreak their devices which could expose them to even higher risks, for example when jailbreaking

9
 In some malvertisement attacks, attackers have uploaded genuine-looking - but malicious – banners (to exploited

advertisement servers) that infect only a few users at random moments, to prevent detection.

10
 Sandboxing and capabilities was rated as the top information security opportunity in our smartphone risk assessment.

http://www.enisa.europa.eu/act/it/oar/smartphones-information-security-risks-opportunities-and-recommendations-for-users/

Appstore security

5 lines of defence against malware

18

removes other defences in the process. There are several models in use, each with different security

considerations:

 Closed app ecosystems: In a closed app ecosystem, there are one or more designated

appstores that can sell or distribute apps. The devices are configured in such a way that users

can only install apps from one or more designated appstores. The appstores in the closed

system form a federation and can agree on common security practices.

 Enterprise app stores: For enterprise users, smartphones could be configured to allow only

apps from a dedicated enterprise app store, allowing the enterprise tight control on app

installation.

 Open app ecosystems: In an open app ecosystem anyone can open an appstore and start

selling or distributing apps to device users. While this gives the device user maximum freedom

of choice, just like on a traditional PC, it also increases the risk of drive-by download attacks.

 Federated appstores: Appstores could form federations by agreeing, inter alia, to a minimum

level of security. Such a federation of app ecosystems could give end-users more choice, while

at the same time preserving the security benefits of a closed app ecosystem.

 App reputation across appstores: Another possibility is to keep a single central list of ‘well-

reputed’ apps as the app whitelist of the app ecosystem. Such a reputation system would

provide a central repository of security information about apps, independently of where the

apps are sold. In this way, the central list is only responsible for assuring the authenticity of the

list entries and their reputation in terms of security and privacy.

This concludes the body of our paper. We refer the reader to the executive summary for our

conclusions.

Appstore security

5 lines of defence against malware

19

(This page is intentionally left blank)

Appstore security

5 lines of defence against malware

20

P.O. Box 1309, 71001 Heraklion, Greece

www.enisa.europa.eu

