

© Copyright 2013, Jet Messaging Technologies AG 1/18

1 Developer Benefits – JMT Library July.2013

Introduction
It’s one to have a library of strong-types which have high-fidelity with the definitions and means in a

Schema, but such a type landscape needs to be useful to a developer in crafting a business

application. Of course, one central benefit to the developer of a message-related business

application is that those types which represent ‘messages’ can be serialised to a form consistent with

the messaging channel to be used, for example, an XML structure packaged into a SOAP container.

However, prior to the serialisation of a type in order to send it somewhere, it must be appropriately

populated with data. Typically, types which represent messages are quite complex structures and, as

defined by the Schema definition, involve mandatory and optional parts which have business

meaning. Often the construction of such complex business-related messages involves a user entering

data via a User Interface of some sort and the code-behind (the View-Model) gathering such input

into the final composition, the message.

How the JMT Library types assist in this compositional task is the central theme of this technical

note. This note should be read in conjunction with those providing insights into the basic strong type

aspects of the JMT types 1,2.

Intellisense & Code-Completion
Anecdotal evidence strongly suggests that developers faced with using a new API3 get up to speed in

the first instance by using a combination of three elements:

1. Intellisense

2. Code Completion

3. Example code

The first two of the above bind very clearly to the properties of the types involved in the new

landscape, whilst the latter is a separate deliverable from the API vendor.

In the case of the JMT Library, Intellisense and Code Completion have been very central topics when

designing the types. However, it should also be noted that a subtle, but key part of (1) & (2) above is

that of showing the XML documentation of types as the developer writes code. This form of hinting

also helps the developer understand the types that are in his focus at any point. For JMT types this

documentation comes directly from the Schema definition, if the schema writer has described clearly

the types in the definition then this knowledge is shown to the developer.

Let us take a concrete example; Taking a Schema as shown in Figure 1, drawn from the HealthCare

domain, and processing it, we would see the corresponding JMT class as shown in Figure 2.

1
 Strong Typing Travel.doc – discusses strong typing in the context of the Travel domain

2
 Strong Typing Finance.doc - discusses strong typing in the context of the Finance domain

3
 API – Application Programming Interface

© Copyright 2013, Jet Messaging Technologies AG 2/18

2 Developer Benefits – JMT Library July.2013

Figure 1 Example Schema (fragment)

Figure 2 C# Code for Class (fragment)

To be noted in these figures is that the documentation in the Schema is retained in the Class, both as

a <summary> to the class as well as a member field (this._documentationField) which is

accessible via a Property. This feature is typical of all library classes.

If we were to now write code using the above class (defined by Schema), following the namespace

appropriate to the schema provider, we would see as shown in Figure 3, below:

Figure 3 Intellisense at Class-level

Here it can be clearly seen how the types existing in the library namespace are displayed and the one

selected actually shows to the developer the schema writers source annotation, which we may

presume as meaningful in the business domain.

© Copyright 2013, Jet Messaging Technologies AG 3/18

3 Developer Benefits – JMT Library July.2013

If we have the situation as shown in Figure 3 and the developer presses TAB, the outcome would be

an auto-completion step, as shown in Figure 4:

Figure 4 Auto-Completion at Class Level

If the developer now enters a period (‘.’), we would see the members of the class Record as shown

in the figure below:

Figure 5 Intellisense at Member Level

In this case the Intellisense list shows us that the content of Record is a synthetic type (not defined

explicitly in the source Schema) which reflects a <sequence> of objects (which is as defined in the

source Schema). If the developer continues with this ‘browsing’ strategy, then the outcome as

shown below:

Figure 6 Intellisense for Defined Type

Figure 7 Intellisense for Class Members

It should be noted that in Figure 7 the lack of documentation is because the source Schema lacks this

information.

© Copyright 2013, Jet Messaging Technologies AG 4/18

4 Developer Benefits – JMT Library July.2013

Building an Application
Of course, as noted in the Introduction, Intellisense and auto-completion play a big part in the easy

adoption by developers of a new API or object framework. However, once the focus shifts from basic

programming tasks to one where a real business application is to be developed, then some other

aspects of the JMT Library emerge to help that process also.

Consider the proof-of-concept application, developed in simple Windows Forms technology which is

to provide the business functionality that allows a user to “search for a low fare” in the domain of Air

Travel, send a message and get an appropriate response from a provider.

Figure 8 Application UI for LowFareSearch

It is important to remark here that the application is not intended to exemplify best practice as far as

UI design is concerned, a commercial application might well decide to position itself on the web and

be developed using an appropriate technology framework there, such as Silverlight or WPF4. The

only purpose of this application is to explore the beneficial patterns that emerge for the developer

when using JMT strong types.

In this sample application, the structure of the various tab Panels and Radio Button groups reflect

the structure of the Schema that define the ‘LowFareSearch’ message, fragments of which are

shown in the figures following:

4
 WPF – Windows Presentation Foundation

© Copyright 2013, Jet Messaging Technologies AG 5/18

5 Developer Benefits – JMT Library July.2013

Figure 9 Schema Request for LowFareSearch

Figure 10 Schema Base Definition for LowFareSearch

Considering Figure 10 above, it can be seen how the top-level <attributes> form the left hand set

of information elements in the User Interface (UI), whilst the <element> sequence is reflected in

the right hand part. The individual elements in this <sequence> are complex and involve choices for

the user when entering data.

© Copyright 2013, Jet Messaging Technologies AG 6/18

6 Developer Benefits – JMT Library July.2013

The following topics are exemplified in this example, and will be discussed individually in following

sections:

 How complex data compositions can be formed leveraging the JMT type characteristics

 How the JMT types can be used in normal C# programming idioms such as type comparison

 How a UI can be embellished with Schema-provided documentation

 How JMT types can be used in Generic class designs which facilitate application architecture

 How JMT types can be reflected over which facilitate application architecture

 How JMT types can have the normal class extension approach applied to them

 How JMT can help in tracking data entry completeness for a complex data structure

Complex Data Compositions
As can be sensed from the above schema and application UI views, the data composition for

LowFareSearch is considerable. It is in just such a complex situation that the developer needs to

have a reliable type landscape for the entities in play. In addition, however, there needs to be a

strategy for building, composing the eventual object that in this case represents a message to be

sent to a communicating service from where, it can be presumed, the LowFareSearch result

(response) will emerge.

In this application the various groupings of data naturally relate to the individual TabPage controls.

So, as an example of development tactic, these individual groupings, which are in fact strong types,

are retained in the (so-called) Tag object of the TabPage objects themselves. The figure below,

illustrates this approach:

Figure 11 JMT Object Persistence

Here we see the object of type TypeSearchLocationType (a JMT type, in a provider namespace)

being instantiated and then saved in the Tag of the TabPage which contains all the data entry

controls appropriate to the type, originTabPage. With this strategy the full composition,

assembling as it does to the message type, can be assembled in structured manner.

Consistent Validation
This approach to instantiating and persisting a real strong type in a control Tag also extends to the

other controls such as TextBox and ComboBox. This has the key benefit that we can apply the

Schema-defined validation rules to the values entered at the UI. For example, within the right-hand

side of the UI pictured in Figure 8, we see the fields, TextBox controls in the group entitled “Search

Origin” (see Figure 12, below).

© Copyright 2013, Jet Messaging Technologies AG 7/18

7 Developer Benefits – JMT Library July.2013

Figure 12 Search Origins Group

In the initialisation phase for our application, the specific types representing the data in each of

these TextBox controls (comprising a <choice>) were saved in the Tag of the individual controls,

for example:

© Copyright 2013, Jet Messaging Technologies AG 8/18

8 Developer Benefits – JMT Library July.2013

Figure 13 Initialising Group Controls

Highlighted here, we are instantiating the JMT types City, CityOrAirport and

CoordinateLocation and assigning them to the respective UI controls.

Now, when the TextChanged event fires for whichever specific control is entering data, i.e. the

content entered in the TextBox changes, we make direct use of the underlying type which

represents a definition from the Schema to validate the entered data. Specifically, because in this

example we think of a UI, when the entered data is invalid we show an appropriately decorated

ErrorProvider. To improve the velocity of development, this example uses a single event handler

for these controls, this event handler we see in Figure 14.

It is also important to note that the pattern applied to validation is very regular and this assists the

developer in achieving consistent, quality outcome for the overall application.

© Copyright 2013, Jet Messaging Technologies AG 9/18

9 Developer Benefits – JMT Library July.2013

Figure 14 Validating Control Data

© Copyright 2013, Jet Messaging Technologies AG 10/18

10 Developer Benefits – JMT Library July.2013

C# Programming Idioms
As the JMT types are strong types, we can use them as with any other C#/.Net type in programming

idioms that can be very helpful to the application developer in achieving a maintainable quality

design with high velocity.

In this example, the Schema demands that the final message can comprise a <sequence> of entities

such as Origin, Destination, Dep/AirTime and LegModifiers, as portrayed in the UI of

Figure 15 below:

Figure 15 Air Leg Components

In this example, to compose the list of individual entities, there are the “+”/”x” controls to the right

of the Air Leg/Search Origins Group. The (+) adds the current data (type) to the overall sequence,

whilst the (x) removes a previously added data item. In the application we need to be efficient when

adding such data items to the collection that represents the <sequence>. This efficiency is achieved

by using the C# idiom as exemplified in Figure 16 , below:

© Copyright 2013, Jet Messaging Technologies AG 11/18

11 Developer Benefits – JMT Library July.2013

Figure 16 C# Type Idiom

Here, similarly to how the TextBox event handler was coded, we use a single event handler to

capture the event that fires when (in this case) the “+” sign is clicked by the user. The key idiom here

is that of being able to silently evaluate the type of the (otherwise neutral, object) Tag of the

TabPage. Specifically, following the test of which TabPage raised the event (by name, with caveat

as shown in the code comment) we silently test if the Tag of the TabPage is of the correct type (a

JMT type). Once this is established we proceed to add (in this example, a rather simple) element to

the list representing the Schema <sequence>.

Being able to interact with types in this way, just like any other type is extremely helpful to the

developer who wants to maximise their focus on the development of the business application.

UI Embellishment
Labels and tooltips (see Fig 17 and 18)

In the design of the UI, a number of textual elements, Labels, have been initialised at design-time

with generic text. If we look at the design surface for the main form of the application, Figure 17

below, the highlighted elements indicate these specific Labels.

The intention, for this example, was to demonstrate how source Schema information can be used to

good effect in decorating the UI and helping the user understand the controls and groupings to be

found there.

At initialisation-time, when the application starts, for example, the <annotation> for the overall

LowFarSearch class is retrieved and set as the text shown in the figure blow as initially having the

content “label_ST”. The control itself in named label_Subtitle and the code to perform this

initialisation is shown in Figure 18

© Copyright 2013, Jet Messaging Technologies AG 12/18

12 Developer Benefits – JMT Library July.2013

Figure 17 Design-Time Labels

Figure 18 Setting Label Text from Schema

The method GetDocumentation() is a helper which retrieves the documentation from a specific

JMT type (specified in the invocation as the Generic type reference), this method will be introduced

in the next section. When the application starts the UI eventually looks like as shown in below Figure

19.

© Copyright 2013, Jet Messaging Technologies AG 13/18

13 Developer Benefits – JMT Library July.2013

Figure 19 Labels at Runtime

It should be noted that the helper methods used here are hardened to cater for the situation that

the type specified has no documentation, i.e. the source Schema does not define any.

The intention of this example is to illustrate how this schema information can be retrieved and used

to decorate a UI, the specific labels used here are by no means the limit of such a strategy. It is

possible that this approach could be extended to retrieve documentation for a specific language, e.g.

Italian, English, German and so on.

Generic Class Design
As noted above, in the case of type documentation, use is made of Generic Classes and Methods. In

the case of the documentation retrieval pattern discussed in the previous section, the key

component is a Generic class that accepts JMT types from which the documentation is extracted.

The key point here, as well as the use of Generic types, is that the JMT types retain the

documentation defined by the schema designer.

If we look at a fragment of the code of this documentation retrieval method, Figure 20, we can get a

sense of how it works. The generic type T, is a JMT type reference, and an object of such a type is

passed as a parameter, along with a default text string to be adopted if the source Schema has no

documentation defined. Provided the generic type is not a Value Type, then an object of the specific

(JMT) type is created and its member collection reflected over. Since all JMT types have either a

“Documentation” or “DocumentationList” Property, this is specifically located within the

collection. Invoking the appropriate Property returns the required documentation string. In the case

where no documentation is defined the default string is adopted.

Here we see the JMT types being used in a strong reflection situation which allows for a well-

structured and accessible way to get the all-important information about types which was defined in

the Schema and provides business information relevant to application design.

© Copyright 2013, Jet Messaging Technologies AG 14/18

14 Developer Benefits – JMT Library July.2013

Figure 20 Documentation Retrieval

Reflection
As we saw in the previous section, the JMT types can be used in situations where general object

creation and reflection is used. In the case of type documentation we also relied on the JMT types

having known Properties and Methods.

© Copyright 2013, Jet Messaging Technologies AG 15/18

15 Developer Benefits – JMT Library July.2013

In LowFareSearch, as well as reflecting to find the all-important documentation data, there are a

number of other helper methods, for example, to enable the application developer to retrieve the

optional or mandatory fields in a type. The pattern here also relies on the consistent way in which

JMT types are constructed and how optional/mandatory fields are signalled.

In Figure 21, a fragment of the Type Inspector code is shown, in this case to discover the Optional

fields in a JMT type, as specified in the Schema:

Figure 21 Optional Field Discovery

© Copyright 2013, Jet Messaging Technologies AG 16/18

16 Developer Benefits – JMT Library July.2013

Data Entry Completeness
As discussed above, one of the patterns explored in the LowFareSearch demonstration application is

that of assembling the overall ‘message’ using persisted objects, the inner elements of composition,

that are bound to TabPages. Although, at the time of writing, incomplete, the target here is to

provide an application developer faced with a complex composition of data such as existing in this

application, a means to signal to the user, who is in fact the one entering the data, that all the

mandatory items have been entered (and as we have noted above, validated as correct to the

Schema definition). At present a placeholder signal is displayed above the right-hand side TabPage

set, the green ProgressBar as shown below in Figure 22

Figure 22 Placeholder Completion Status Signal

It is anticipated that events would be signalled by the Completion Manager component to

subscribing listeners so that, for example the ProgressBar could be finalised as well as the

“Search” button enabled.

JMT Documentation
The JMT Library deliverables include extensive documentation, covering both the classes themselves

and their related Schema definitions. This documentation is shown in the following figures:

Figure 23 Top-level Documentation Sample

© Copyright 2013, Jet Messaging Technologies AG 17/18

17 Developer Benefits – JMT Library July.2013

Figure 24 Class-level Documentation

Figure 25 Schema-level Documentation

© Copyright 2013, Jet Messaging Technologies AG 18/18

18 Developer Benefits – JMT Library July.2013

JMT Examples
As part of the JMT Library deliverables a range of examples will be provided. These will exemplify

key concepts in using the JMT types, from ‘getting started’ to ‘advanced’ level.

© 07/2013 Jet Messaging Technologies AG
All rights reserved.

Jet Messaging Technologies AG
Rotwandstrasse 35, 8004 Zurich, Switzerland
Phone +41 79 176 89 80

Email info@jet-messaging.com
www.jet-messaging.com

