Developer Benefits — JMT Library July.2013

Introduction

It’s one to have a library of strong-types which have high-fidelity with the definitions and meansin a
Schema, but such a type landscape needs to be useful to a developer in crafting a business
application. Of course, one central benefit to the developer of a message-related business
application is that those types which represent ‘messages’ can be serialised to a form consistent with
the messaging channel to be used, for example, an XML structure packaged into a SOAP container.
However, prior to the serialisation of a type in order to send it somewhere, it must be appropriately
populated with data. Typically, types which represent messages are quite complex structures and, as
defined by the Schema definition, involve mandatory and optional parts which have business
meaning. Often the construction of such complex business-related messages involves a user entering
data via a User Interface of some sort and the code-behind (the View-Model) gathering such input
into the final composition, the message.

How the JMT Library types assist in this compositional task is the central theme of this technical
note. This note should be read in conjunction with those providing insights into the basic strong type
aspects of the JMT types “°.

Intellisense & Code-Completion

Anecdotal evidence strongly suggests that developers faced with using a new API® get up to speed in
the first instance by using a combination of three elements:

1. Intellisense
2. Code Completion
3. Example code

The first two of the above bind very clearly to the properties of the types involved in the new
landscape, whilst the latter is a separate deliverable from the API vendor.

In the case of the JMT Library, Intellisense and Code Completion have been very central topics when
designing the types. However, it should also be noted that a subtle, but key part of (1) & (2) above is
that of showing the XML documentation of types as the developer writes code. This form of hinting
also helps the developer understand the types that are in his focus at any point. For JMT types this
documentation comes directly from the Schema definition, if the schema writer has described clearly
the types in the definition then this knowledge is shown to the developer.

Let us take a concrete example; Taking a Schema as shown in Figure 1, drawn from the HealthCare
domain, and processing it, we would see the corresponding JMT class as shown in Figure 2.

! Strong Typing Travel.doc — discusses strong typing in the context of the Travel domain
2 Strong Typing Finance.doc - discusses strong typing in the context of the Finance domain
* API - Application Programming Interface

© Copyright 2013, Jet Messaging Technologies AG 1/18

Developer Benefits — JMT Library July.2013

<xs:element name = "Record">
<X3:annotation>
<xs:idocumentation>This represents a Record for a drog item and contains Administration
and Public information as well as detailed information on published abstracts
related to the drug.[</xs:documentation>

</xs:annotation>
<xs:complexType>
<X=:seguence>

1 <xXs:element name = "AdminSection">
L&) <xs8:annotation
<xs:documentation>

This represents the Administration information related to a named drug. It contains the
details of Copyright and Originator as well as the Category and Archive number for the
main prodoct information.

</xs:documentation>

21 </Xs:iannotation>

2z <Xxs:complexType>

23 <X38!seguence>

24 <xs:element name = "Record">

25 <Xs:complexType>

26 <X8:seguence

27 <xs:element name = "Copyright" type = "xs:string"></xs:element>
28 <xs:element name = "Originator" type = "xs:string">

29 </xs:ielement>

30 <xs:element name = "ArchiveNumber" type = "Xs:integer">

Figure 1 Example Schema (fragment)

<summary>
/ This represents a Record for a drug item and contains Administration and
/ Public information as well as detailed information on published abstracts
related to the drug.
/// </summary>
[System.CodeDom. Compiler.GeneratedCodeattribute("CodeConstruction”, "2.8.8")]
[System.SerializableAttribute()]

[System.Diagnostics.DebuggerstepThrough ute()]
[System.ComponentModel.Designercategory ute("code”)]

[System.Xml.Serialization.XmlRoo ute(Namespace = "Jetstream.Technologies”, ElementName = "recordType”, IsNullable = true)]
public partial class Record : ElementBase, ICloneable, ISerializable

{

// This represents a Record for a drug item and contains Administration and Public information as well as detailed information on published abstracts related to the drug
private string _documentationField;

private string xmlTag = “recordType";
private Guardedlist<RecordSeqType_> _recordSeqField;
private Integer _ulIDField;

public Record() :
base()

this._documentationField = "This represents a Record for a drug item and contains Administration” +
"and Public information as well as detailed information on published” +
"sbstracts related to the drug.”;

Figure 2 C# Code for Class (fragment)

To be noted in these figures is that the documentation in the Schema is retained in the Class, both as
a <summary> to the class as well as a member field (this. documentationField) whichis
accessible via a Property. This feature is typical of all library classes.

If we were to now write code using the above class (defined by Schema), following the namespace
appropriate to the schema provider, we would see as shown in Figure 3, below:

[TestMethod]
public void TestMethod_BasicIntellisenseAndDocumentation()
{

Imt.HealthCare.CRec.vl_@.Element.
h # DescriptorList

*3 class Jmt.HealthCare.CRec.v1_0.Element.Record

This represents a Recerd for a drug item and contains Administration and Public information as well as detailed information on published
abstracts related to the drug.

Figure 3 Intellisense at Class-level

Here it can be clearly seen how the types existing in the library namespace are displayed and the one
selected actually shows to the developer the schema writers source annotation, which we may
presume as meaningful in the business domain.

© Copyright 2013, Jet Messaging Technologies AG 2/18

Developer Benefits — JMT Library July.2013

If we have the situation as shown in Figure 3 and the developer presses TAB, the outcome would be
an auto-completion step, as shown in Figure 4:

[TestMethod]
public woid TestMethod _BasicIntellisensefndDocumentation()

1
b

Jmt.HealthCare.CRec.vl @.Element.Record

Figure 4 Auto-Completion at Class Level

If the developer now enters a period (“.’), we would see the members of the class Record as shown
in the figure below:

[TestMethod]
public woid TestMethod_BasicIntellisenseAndDocumentation()
{

Imt.HealthCare.CRec.vl @.Element.Record.
¥ @ Equals

g 4 RecordSeqType_ class Jmt.HealthCare.CRec.vl_0.Element.Record RecordSeqType_
& ReferenceEquals

Figure 5 Intellisense at Member Level

In this case the Intellisense list shows us that the content of Record is a synthetic type (not defined
explicitly in the source Schema) which reflects a <sequence> of objects (which is as defined in the
source Schema). If the developer continues with this ‘browsing’ strategy, then the outcome as

shown below:

[TestMethod]
public void TestMethod BasicIntellisenseAndDocumentation()
{
Imt.HealthCare.CRec.v1_0.Element . Record. RecordSeqType_.
} #2 AdminSectionType_
¥z ContentSectionType_
& Equals
4] PublicSectionType_ class Jmt HealthCare.CRec.v1,_0.Element Record.RecordSeqType._PublicSectionType_
© ReferenceEquals This represents the Public information related to a named drug. It contains the details of Citation information for the named drug as well as an
associated Author Keyweord ist,

Figure 6 Intellisense for Defined Type

[TestMethod]
public woid TestMethod_BasicIntellisenseAndDocumentation()
1

Imt.HealthCare.CRec.vl_@.Element.Record.RecordSeqType_.PublicSectionType_.PublicsectionseqType_.CitationType_.CitationSeqType ct =
new Jmt.HealthCare.CRec.vl_8.Element.Record.RecordSeqType_.PublicSectionType_.PublicSectionSeqType_.CitationType_.CitationSeqType_();
ct.
} ~ “ Jmt.XsdPrimitive.V1_0.XsdString CitationSeqType_AuthorAbstract
F AuthorAbstractFieldSpecified
& AuthorGroup
K CitationDetails
K CitationTitle
J CitationTitleFieldSpecified
@ Clone
@ DeserializeFromXml

Documentation -

Figure 7 Intellisense for Class Members

It should be noted that in Figure 7 the lack of documentation is because the source Schema lacks this
information.

© Copyright 2013, Jet Messaging Technologies AG 3/18

Developer Benefits — JMT Library July.2013

Building an Application

Of course, as noted in the Introduction, Intellisense and auto-completion play a big part in the easy
adoption by developers of a new API or object framework. However, once the focus shifts from basic
programming tasks to one where a real business application is to be developed, then some other
aspects of the JMT Library emerge to help that process also.

Consider the proof-of-concept application, developed in simple Windows Forms technology which is
to provide the business functionality that allows a user to “search for a low fare” in the domain of Air
Travel, send a message and get an appropriate response from a provider.

&, Low Fare Search v1.0 — — - - - SHICE X
: S,
Low Fare Search Jet Messaging Technologies ol)
Low Fare Search request. bridging the gap AN
Completed: 100%
Opti ;
HE Search Choice | Air Search Modffiers I Air Pricing Modffiers I Air Exchange Modfiers I En i |:s|

Choices -
@ Search version of AirLeg used to specify search criteria

(71 Search a specific Air Seament specified...

Mumber of Expert Solutions: -
7 8 Air Leg | Segment

Search...
Origin | Destination I Dep./Air Time I Leg Mod'rfiers|

Solution Result
[Prefer Complete tinerary

Trace ID:
Search Origins...
Authorised By: @ Airport
. e
© ay ©
Branch Code: () City OR Airport

() Coordinate Location
The type of various Logging levels

TRACE R

() Rail Location

Distance @

Value Units Direction
Mi -

Figure 8 Application Ul for LowFareSearch

It is important to remark here that the application is not intended to exemplify best practice as far as
Ul design is concerned, a commercial application might well decide to position itself on the web and
be developed using an appropriate technology framework there, such as Silverlight or WPF*. The
only purpose of this application is to explore the beneficial patterns that emerge for the developer

when using JMT strong types.

In this sample application, the structure of the various tab Panels and Radio Button groups reflect
the structure of the Schema that define the ‘LowFareSearch’ message, fragments of which are

shown in the figures following:

* WPF — Windows Presentation Foundation

© Copyright 2013, Jet Messaging Technologies AG 4/18

Developer Benefits — JMT Library

July.2013

“<uz:element name=“LowFareSearcHReq”}
<¥=:annotation>

<Hsidocumentation>
Low Fare Search request.
</#z1documentations
</x=:annotation>
<Xz :conmplexType>
<x=z:complexContent>

<¥z:extension baze="BaselowFareSearchRegq">
</ ®sextensiony
</xs:complexContent>

< /®3:complexTypes
“/Hzrelement>

Figure 9 Schema Request for LowFareSearch

Zxs:complexType nare="BaselowFareSearchRed'>
<xs:annotation>
B <xs:documentation>
Base Low Fare Search Request
</xs:documentation>
</xs:annotation>
=) <xs:complexContent>
<xs:extension base="AirSearchReq">
<xs:sequence>
<xs:element ref="common:SearchPassenger" maxOccurs="18" >
=] <xs:annotation>
<xs:documentati i T of i
</xs:annotation>
</xs:element>
<xs:element

in to 18 to support 9 INF passenger along with 9 ADT,CHD,INS

AirPricinglodifiers" m
Enumeration” min0

" maxOccurs="5" />
o />

</xs:isequencey
E <xs:attribute name="EnablePointToPointSearch" type="xs:boolean" use="optional" default="false">
=] <xs:annetation>

</xs:annotation>
</xg:iattribute>
=] <xs:attribute name="EnablePointToPointAlternates” type="xs:boolean" use="optional" default="false">

</xs:annotation>
</xs:attribute>
<xs:attribute name="MaxNumberOfExpertSolutions” Cype="xs:integer” use='"optional” defzult="0">

</xs:annotation>
</xs:actribute>
=] <xs:attribute name="SolutionResult" type="xs:boolean" use="optional" default="true">
% <xs:annotation>

The default value is true.
This attribute cannot be combined with
</xs:annotation>
</xs:attributes
=] <xs:attribute name="PreferCompleteltinerary” type="xs:boolean" use="optional" default="true">

<xs:documentation>This attribute is only supported for ACH .It works in conjunction with the ESolutionResult flag </xs:documentationy
</xs:annotation>
</xs:attributes
</®s:iextension>
</xs:cemplexContent>
</xs: complexType>

passenger</xs:documentation>

<xs:idocumentation>Indicates that low cost providers should be queried for top connection options and the results returned with the search.</xs:documentation>

<xs:documentacion>Indicates that suggestions or alternate connection eities for low cost providers should be returned with the search.</xs:documentation>

<xs:documentacion>Indicates the Maximum Number of Expert Solutions to be returned from the Knowledge Base for the provided search criteriac/xs:documentation>

<xs:documentacion>Indicates whether the response will contain Solution result (AirPricingSolution) or Non Solution Result (AirPricingPoints).

intToPointAlternates and MaxNunberOfExpertSolutions.</xs:documentation>

Figure 10 Schema Base Definition for LowFareSearch

Considering Figure 10 above, it can be seen how the top-level <attributes> form the left hand set
of information elements in the User Interface (Ul), whilst the <element> sequence is reflected in
the right hand part. The individual elements in this <sequence> are complex and involve choices for

the user when entering data.

© Copyright 2013, Jet Messaging Technologies AG

5/18

Developer Benefits — JMT Library July.2013

The following topics are exemplified in this example, and will be discussed individually in following
sections:

e How complex data compositions can be formed leveraging the JMT type characteristics

e How the JMT types can be used in normal C# programming idioms such as type comparison
e How a Ul can be embellished with Schema-provided documentation

e How JMT types can be used in Generic class designs which facilitate application architecture
e How JMT types can be reflected over which facilitate application architecture

e How JMT types can have the normal class extension approach applied to them

e How JMT can help in tracking data entry completeness for a complex data structure

Complex Data Compositions

As can be sensed from the above schema and application Ul views, the data composition for
LowFareSearch is considerable. It is in just such a complex situation that the developer needs to
have a reliable type landscape for the entities in play. In addition, however, there needs to be a
strategy for building, composing the eventual object that in this case represents a message to be
sent to a communicating service from where, it can be presumed, the LowFareSearch result
(response) will emerge.

In this application the various groupings of data naturally relate to the individual TabPage controls.
So, as an example of development tactic, these individual groupings, which are in fact strong types,
are retained in the (so-called) Tag object of the TabPage objects themselves. The figure below,
illustrates this approach:

{ <summary:>
/ Initialise the Tab Page entitled: Origin
</ summary>
{ ¢<param name="form">The main form object</param:
/ <param name="tp":>The TabPage object</param:>

private static wvoid InitialiseTabPageAirLegOrigin(Form form, TabPage originTabPage)

1
Imt .. -+ 1 ¢ 69.TypeSearchlocationType tslt =
new Jmt. NN .+ 1 @ 69.TypeSearchlocationType();
// put the overall TypeSearchlLocation in the Tag of the Origin TabPage
originTabPage.Tag = (cbject)tslt;

Figure 11 JMT Object Persistence

Here we see the object of type TypeSearchLocationType (a JMT type, in a provider namespace)
being instantiated and then saved in the Tag of the TabPage which contains all the data entry
controls appropriate to the type, originTabPage. With this strategy the full composition,
assembling as it does to the message type, can be assembled in structured manner.

Consistent Validation

This approach to instantiating and persisting a real strong type in a control Tag also extends to the
other controls such as TextBox and ComboBox. This has the key benefit that we can apply the
Schema-defined validation rules to the values entered at the Ul. For example, within the right-hand
side of the Ul pictured in Figure 8, we see the fields, TextBox controls in the group entitled “Search
Origin” (see Figure 12, below).

© Copyright 2013, Jet Messaging Technologies AG 6/18

Developer Benefits — JMT Library July.2013

Low Fare Search Jet Messaging T
Low Fare Search request. Completed: 100% bridging t :
Options o
Search Choice | Ar Search Modifiers I Air Pricing Modifiers I Air Exchange I'u'I?'

Choices

@ Search version of AirLeg used to specify search criteria #
) Search a specific Air Segmert specified. .. y

Mumber of Expert Solutions: _ '
] : Air Leg | Segment 4
Search...)

Origin | Destination I Dep/ir Time I Leg I'U'Iud'rﬁers|

Solution Result
[7] Prefer Complete tinerany

Trace ID:
Search Crigins...
Authorised By: @ Airport
0 City
Branch Code: i) City OR Aiport

) Coordinate Location

The type of varous Logging levels i
I Rail Location

- N?“N:‘R'"-H ﬁ'—.__.';"“"‘“‘}‘\“‘l‘-ﬁ-\ sl = : H‘A o r“‘ '-_.ﬁ — Tt

Figure 12 Search Origins Group

In the initialisation phase for our application, the specific types representing the data in each of
these TextBox controls (comprising a <choice>) were saved in the Tag of the individual controls,

for example:

© Copyright 2013, Jet Messaging Technologies AG 7/18

Developer Benefits — JMT Library July.2013

7 U City
It I . 4 1 @ 69.Element.City city =
Tools.Choice.GetChoiceElementObjectByName <Jmt NN . 4 1 8_69.Element.City>("City", choicelist);
ystem. Windows . F S.Radiobutton rb =
(System.Windows.Forms.RadicButton)originGroupBox.Controls.Find ("radioButton_SL_City™, true)[e];
Tools.ToolTips.ConfigureToolTip(new ToclTip(), rb,
Tools.DocumentationRetriever<Imt. TravelPort UAPI.v4 1 @ 69.Element.City>.GetDocumentation(city,
"Origin is a City"));
System.Windows.Forms.TextBox cityTB =
(System.Windows.Forms. TextBox)originGroupBox.Controls.Find("textBox_Cityvalue", true)[e];
cityTB.Tag = (object)city;
}
S City OR Airport
{
Jmt. . .4 1 @ 69.Element.CityOrAirport cityOrAirport =
Tools.Choice.GetChoiceElementObjectByName<Jmt . NN . v4 1 ©_69.Element.CityOrtirport>("CityOrairport”, choicelist);
v " "
(System.Windows.Forms.RadicButton)originGroupBox.Controls.Find("radicButton_SL_CityOrAirport™, true)[@];
Tools.ToolTips.ConfigureToolTip(new ToclTip(), rb,
Tools.DocumentationRetriever<imt. .v4 1 8 69.Element.CityOrAirport>.GetDocumentation(cityOrAirport,
"Origin is & City OR Airport™)});
System.Windows.Forms.TextBox cityOrAirportTE =
(System.Windows.Forms. TextBox)originGroupBox.Controls. Find("textBox_CityOrAirportvalue”, true)[@];
cityOrAirportTB.Tag = (object)cityOrAirport;
¥
. Coordinate Location
{
It I v+ 1 @ 69.Element.Cocrdinatelocation coordinatelocation =
Tools.Choice.GetChoiceElementObjectiyName<Imt . N . 4 1 @ 69.Element.Coordinatelocation>("Coordinatelocation”, choicelist);
Y EM. WINGOWS . FOTME . Ra0 LoCI Lo 10 =
(System.Windows.Forms.RadicButton)originGroupBox.Controls.Find("radicButton_SL_CoordinateLocation™, true)[@];
Tools.ToclTips.ConfigureToolTip(new ToclTip(), rb,
Tools.DocumentationRetriever<Imt . NN . 4 1 ®_69.Element.Coordinatelocation>.GetDocumentation(coordinatelocation,
~oriedin s specified byv dtc coordingtestiy;
System.Windows.Forms.TextBox coordinatelocationTB =
(System.Windows. Forms. TextBox)originGroupBox.Controls.Find("textBox_CoordLocationValue”, true)[@];
coordinatelocationTB.Tag = (cbject)ccordinatelocation;
}
7 Rail Location
{
Jmt:. I 2 1 #_69.Element.Raillocation raillocation =
Toels.Choice.GetChoiceElementObjectByName<dmt . GGG . v4 1 ¢ 59.Element.Raillocations("Raillocation”, choicelist);
System.Windows.Forms.RadicButton rb =
(System.Windows.Forms.RadicButton)originGroupBox.Controls.Find("radioButton_SL_Raillocation™, true)[@];
Tools.ToolTips.ConfigureToolTip(new ToclTip(), rb,
Tools.DocumentationRetriever<Imt. .v4_1 8 69.Element.Raillocation>.GetDocumentation(railLocation,
“feigin ic cnacifiad b o2 eail edinata™il.

Figure 13 Initialising Group Controls

Highlighted here, we are instantiating the JMT types City, CityOrAirport and
CoordinatelLocation and assigning them to the respective Ul controls.

Now, when the TextChanged event fires for whichever specific control is entering data, i.e. the
content entered in the TextBox changes, we make direct use of the underlying type which
represents a definition from the Schema to validate the entered data. Specifically, because in this
example we think of a Ul, when the entered data is invalid we show an appropriately decorated
ErrorProvider. To improve the velocity of development, this example uses a single event handler
for these controls, this event handler we see in Figure 14.

It is also important to note that the pattern applied to validation is very regular and this assists the
developer in achieving consistent, quality outcome for the overall application.

© Copyright 2013, Jet Messaging Technologies AG 8/18

Developer Benefits — JMT Library July.2013

/o <summary
/ Handle all the TextBox Text Changed events here.
! (We might think of a better organisation)
</ summary>
/ <param name="sender"></param:
/ <param name="e"></param:
private wvoid textBox TextChanged(cbject sender, Eventirgs e)

1

FIwe know its @ text box who is sending
TextBox th = (TextBox)sender;
if (string.Compare(tb.Name, "textBox_AirportValue", false) == 8)
1
// associate this TB with an appropriate type, the strongly
!/ typed IMT cbject is in the Tag of the TextBox
Jmt:. I . 4 1 @ 69.Element.firport airport =
(Jmt . I .4 1 @ 69.Element.Airport)tb.Tag;
try
1
ff TODO text here is within AirportCode
airport.Code.Text = tb.Text;
errorProvider_Main.SetError(tb, String.Empty);
¥
catch (ArgumentExcepticn)
1
errorProvider_Main.SetError(tb,
"The Value entered is not valid");

}

¥
else if (string.Compare(tb.Name, “textBox CityValue", false) == @)

1
// associate this TB with an appropriate type, the strongly
// typed IMT object is in the Tag of the TextBox
Jmi:. . 1 1 @ G60.Element.City city =
(It N .2 1 @ 59.Element.City)tb.Tag;

try
1

city.Code.Text = th.Text;

errorProvider_Main.SetError(tb, String.Empty);
¥
catch (ArgumentExcepticn)
1

errorProvider_Main.SetError(tb,

"The Value entered is not valid");

¥
¥
else if (string.Compare(tb.Name, "textBox CityOrAirportValue", false) ==
1
// associate this TB with an appropriate type, the strongly
// typed IMT object is in the Tag of the TextBox
It I . 1 1 @ 69.Element.CityOrdirport cityOrdirport =
(Imt: . N .4 1 & 69.Element.CityOriirport)tb.Tag;
try
I

)

Figure 14 Validating Control Data

© Copyright 2013, Jet Messaging Technologies AG

9/18

Developer Benefits — JMT Library

C# Programming Idioms

July.2013

As the JMT types are strong types, we can use them as with any other C#/.Net type in programming

idioms that can be very helpful to t
design with high velocity.

he application developer in achieving a maintainable quality

In this example, the Schema demands that the final message can comprise a <sequence> of entities
such as Origin, Destination, Dep/AirTime and LegModifiers, as portrayed in the Ul of

Figure 15 below:

Low Fare Search

Low Fare Search request.

Jet Messaging Techn
bridging the gap

Completed: 100%

Options

MNumber of Bxpert Solutions:
] ;

Solution Result

[] Prefer Complete tinerary
Trace 1D:
Authorsed By:

Branch Code:

The type of vardous Logging levels
TRACE -

Search Choice | Ar Seanch Modifiers I Air Pricing Modffiers I Air Exchange Modifiers I Enur

Choices :
@ Search version of AirLeg used to specify search critera

(") Search a specffic Air Seament specified....

Air Leg | Segment

Search..
Origin | Destination I Dep/Air Time I Leg Mod'rfiers|

Search Crigins...
@ Airport
© ay ()
) City OR Airport
(7 Coordinate Location

) Rail Location

Distance @

Wallia | mit= Clirertinn

Figure 15 Air Leg Components

In this example, to compose the list of individual entities, there are the “+”/”x” controls to the right
of the Air Leg/Search Origins Group. The (+) adds the current data (type) to the overall sequence,
whilst the (x) removes a previously added data item. In the application we need to be efficient when
adding such data items to the collection that represents the <sequence>. This efficiency is achieved
by using the C# idiom as exemplified in Figure 16 , below:

© Copyright 2013, Jet Messaging Technologies AG 10/18

Developer Benefits — JMT Library July.2013

f) <summary>

Handler for the click event of the '+’ sign - move data on left to the
list on the right.

</ summary>

<param name="sender”>The sender object</param>

/// <param name="e">The event args cbjectﬁfpa’a¢4

private void pictureBoxPlus_Click(cbject sender, EventhArgs e)

{

// The '+' sign pictue has been clicked

// Assemble the data for the currently selected Air Leg

/i inner TabPage.

// Would rather like not to use the TabPage Name to match on here, as
[/ we would need to re-code if we translated the app to a different
// language; German, French etc...

System.Windows.Forms.TabPage tp = this.tabControl AirLeg.SelectedTab;

if (string.Compare(tp.Name, "tabPage_Airleg SearchOrigin™, false) == @ &8
tp.Tag is JImt. .vd_1 @ 69.TypeSearchLocationType}
1
/f Air Leg » Search Origin
Jmt . I .4 1 @ 69.TypeSearchlLecationType tslt =
(mt. NN -2 1 @ 659.TypeSearchLocationType)tp.Tag;
// here we would like to compose a line that identifies the element by a small
/f fragment of its data - "left to the interested reader”
/f TODO compose a better element entry in list
this.listBox_AirLeg.Items.Add("Search Origin element [" + string.Format("{@,2}", airlegListBoxCounter + "]"));
airLeglListBoxCounter++;
1

1 T I e r fdwe W wy 0 Ainl [Vv B I [N Y A

Figure 16 C# Type Idiom

Here, similarly to how the TextBox event handler was coded, we use a single event handler to
capture the event that fires when (in this case) the “+” sign is clicked by the user. The key idiom here
is that of being able to silently evaluate the type of the (otherwise neutral, object) Tag of the
TabPage. Specifically, following the test of which TabPage raised the event (by name, with caveat
as shown in the code comment) we silently test if the Tag of the TabPage is of the correct type (a
JMT type). Once this is established we proceed to add (in this example, a rather simple) element to
the list representing the Schema <sequence>.

Being able to interact with types in this way, just like any other type is extremely helpful to the
developer who wants to maximise their focus on the development of the business application.

Ul Embellishment
Labels and tooltips (see Fig 17 and 18)

In the design of the Ul, a number of textual elements, Labels, have been initialised at design-time
with generic text. If we look at the design surface for the main form of the application, Figure 17
below, the highlighted elements indicate these specific Labels.

The intention, for this example, was to demonstrate how source Schema information can be used to
good effect in decorating the Ul and helping the user understand the controls and groupings to be
found there.

At initialisation-time, when the application starts, for example, the <annotation> for the overall
LowFarSearch class is retrieved and set as the text shown in the figure blow as initially having the
content “label ST”. The control itself in named label Subtitle and the code to perform this
initialisation is shown in Figure 18

© Copyright 2013, Jet Messaging Technologies AG 11/18

Developer Benefits — JMT Library July.2013

'3{3 Low Fare Search 1.0 r
Low Fare Search Jet Messaging Techi'
label_ST bridging the ga

Compieted: 9ing the gap
Options ! - y o y - -
Search Choice | Ajr Search Modffiers I Air Pricing Modifiers I Air BExchange Modffiers I Er{
[T Point4o-Paint Choices "
_ _) fradioButton_SAL
] Paint4o-Point Atemates © kradioButton_SSAS
Number of Expert Solutions: -
-I : .pdl' LEQ SBQITIEﬂt
[Solution Result Search...
[Prefer Complete Hinerary COrigin | Destination I Dep./Air Time | Leqg Mod'rﬂersl
Trace 1D:
Authorised By: " Aiport
O City
Branch Code: L. ® City OR Aiport
u] u] _
‘ | Coordinate Location
Logging Level: .
) Rail Location PR
T “‘"\"“’""\.\ AR et *I_\‘-. e ,‘JIM“\\..’.’\;‘. \.—...ﬂvl--’ sl "‘“"-_n-'_.\ r

Figure 17 Design-Time Labels

public Form_Main()

{

InitializeComponent();

// provide the schema documentation as a subtitle
this.label Subtitle.Text =
Tools.DocumentationRetriever<Jmt . NN .2 1 @ 69.Element. LowFareSearchReq>.GetDocumentation(1fsr,
"Search today for the best Fares going...");

Figure 18 Setting Label Text from Schema

The method GetDocumentation() is a helper which retrieves the documentation from a specific
JMT type (specified in the invocation as the Generic type reference), this method will be introduced
in the next section. When the application starts the Ul eventually looks like as shown in below Figure
19.

© Copyright 2013, Jet Messaging Technologies AG 12/18

Developer Benefits — JMT Library July.2013

L. Low Fare Search v1.0

Low Fare Search Jet Messaging Tecl

| Low Fare Search request. | Completed: 100% bridging the ga

Options

Search Choice | Ar Seanch Modifiers I Air Pricing Modifiers I Air Exchange Modifiers

Choices

(@0 Search version of AirLeg used to specify search criteria

()l Search a specific Air Segment specified...
MNumber of Expert Solutions:

1 Air Leg | Segment

Search...
Origin |De5tinaticn I Dep/Air Time | Leg Mod'rfiers|

Solution Result
[7] Prefer Complete tinerary

Trace |D:
Search Origins..
Authorised By: @ Mirport
® ay C
Branch Code: (") City OR Airport

() Coordinate Location
The type of varous Logging levels

TRACE -

) Rail Location

Figure 19 Labels at Runtime

It should be noted that the helper methods used here are hardened to cater for the situation that
the type specified has no documentation, i.e. the source Schema does not define any.

The intention of this example is to illustrate how this schema information can be retrieved and used
to decorate a Ul, the specific labels used here are by no means the limit of such a strategy. It is
possible that this approach could be extended to retrieve documentation for a specific language, e.g.
Italian, English, German and so on.

Generic Class Design

As noted above, in the case of type documentation, use is made of Generic Classes and Methods. In
the case of the documentation retrieval pattern discussed in the previous section, the key
component is a Generic class that accepts JMT types from which the documentation is extracted.
The key point here, as well as the use of Generic types, is that the JMT types retain the
documentation defined by the schema designer.

If we look at a fragment of the code of this documentation retrieval method, Figure 20, we can get a
sense of how it works. The generic type T, is a JMT type reference, and an object of such a type is
passed as a parameter, along with a default text string to be adopted if the source Schema has no
documentation defined. Provided the generic type is not a Value Type, then an object of the specific
(JMT) type is created and its member collection reflected over. Since all JMT types have either a
“Documentation” or “DocumentationList” Property, this is specifically located within the
collection. Invoking the appropriate Property returns the required documentation string. In the case
where no documentation is defined the default string is adopted.

Here we see the JMT types being used in a strong reflection situation which allows for a well-
structured and accessible way to get the all-important information about types which was defined in
the Schema and provides business information relevant to application design.

© Copyright 2013, Jet Messaging Technologies AG 13/18

Developer Benefits — JMT Library July.2013

ff <summary
/// Retrieve the documentation for a specific strong type, T.
/] We provide a default if no Schema documentation is provided.
A1 </ summary>
/f/ «<param name="obj">The strong-typed object containing a documentation
/] Property/Method holding the Schema-defined documentation</param:
/// <param name="deflt":A default documentation if no schema-defined
/// form has been defined</param:>
/// <returns:An appropriate documentation string</returns:
public static string GetDocumentation(T obj, string deflt)
i
string ret = deflt;
if (obj == null)

1
return deflt;
b
if (typeof(T) == typeof(String)) return deflt;
if {typeof(T).IsvValueType || typeof(T).FullName == "System.String")
1
return deflt;
1
elze
1

T inst = Activator.CreateInstance<T>();
//MethodInfo callInfo = typeof(ClassA).GetMethod(args[@], param_types);
PropertyInfo pInfo = typeof(T).GetProperty("Documentation™);

if (pInfo == null)

1
MethodInfo mInfol = typeof(T).GetMethod("Documentationlist™);
if (mInfol != null)
1
ReadOnlyCollection<string> collection =
(ReadOnlyCollecticn<string>)mInfol.Invoke(inst, new object[] { });
ret = MassageSchemaDocumentationString(collection[@]);
¥
else
{
ret = deflt;
}
¥
else
1
MethodInfo mInfo2 = pInfo.GetGetMethod();
string s = (string)mInfo2.Invoke(inst, new ocbject[] { });
ret = MassageSchemaDocumentationstring(s);
¥
if {ret.Length == 8)
1
ret = deflt;
1

Figure 20 Documentation Retrieval

Reflection

As we saw in the previous section, the JMT types can be used in situations where general object
creation and reflection is used. In the case of type documentation we also relied on the JMT types
having known Properties and Methods.

© Copyright 2013, Jet Messaging Technologies AG 14/18

Developer Benefits — JMT Library

July.2013

In LowFareSearch, as well as reflecting to find the all-important documentation data, there are a
number of other helper methods, for example, to enable the application developer to retrieve the
optional or mandatory fields in a type. The pattern here also relies on the consistent way in which

JMT types are constructed and how optional/mandatory fields are signalled.

In Figure 21, a fragment of the Type Inspector code is shown, in this case to discover the Optional

fields in a JMT type, as specified in the Schema:

A/ <summary:

//f This method allows a developer to get a list of all the Optional
'/ fields by their name.

</ summary>

/! <remarks:

'// The prefix to this part is the actual name of the field in the type.
FAF < fremarks:
'/ <typeparam name="T">The type of the strong IJMT type to

/ be examined</typeparam:
/f <param name="obj":A candidate object to be examined</param:
Jf <returns:A list of type names, being the optional set</returns:
public static List<string> OptionalFieldNames<T>(T obj)

1

List<string> list = new List<string=();

if (typeof(T) == typeof(5tring)}) return list;

if (typeof(T).IsValueType || typeof(T).FullName == "System.String")
1
return list;
b
else
1
T inst = Activator.CreateInstance<T:();
PropertyInfo[] pInfo = typeof(T).@etProperties();
if (pInfo == null || pInfo.Length == 8)
1
return list;
b
else
1
string name;
foreach (PropertyInfo info in pInfo)
1
if (info.Mame.EndsWith("FieldSpecified™))
1
name = info.Mame.Substring(@, info.Mame.Length - 14);
list.Add(name);
b
h
b
h

return list;

'/ We look for all public Properties whose name ends in "FieldSpecified:.

Figure 21 Optional Field Discovery

© Copyright 2013, Jet Messaging Technologies AG

15/18

Developer Benefits — JMT Library July.2013

Data Entry Completeness

As discussed above, one of the patterns explored in the LowFareSearch demonstration application is
that of assembling the overall ‘message’ using persisted objects, the inner elements of composition,
that are bound to TabPages. Although, at the time of writing, incomplete, the target here is to
provide an application developer faced with a complex composition of data such as existing in this
application, a means to signal to the user, who is in fact the one entering the data, that all the
mandatory items have been entered (and as we have noted above, validated as correct to the
Schema definition). At present a placeholder signal is displayed above the right-hand side TabPage
set, the green ProgressBar as shown below in Figure 22

= — —— = - =
', Low Fare Search v1.0 - - [E=N e
. L S,
Low Fare Search Jet Messaging Technologies s) ’
Low Fare Search request. rrretertrrer-riTerere AN rF
Completed: 100% F
Options e ammm
A e e B ofrers—t } A
Choices - 4
@ Search version of AirLeg used to specify search criteria
() Search a specific Air Segment specified... X
Mumber of Expert Solutions: - ,
7 ; AirLeg | Segmert 2\
Solution Result Search...
[Prefer Complete finerary Origin | Destination I Dep./Air Time I Leg Mod'rﬁers|
Trace ID:
Search Origins...
Authorised By: @ Aiport
_ P
o e P PSR- N) P
T W 4 R P o e S PN N SN N

Figure 22 Placeholder Completion Status Signal

It is anticipated that events would be signalled by the Completion Manager component to
subscribing listeners so that, for example the ProgressBar could be finalised as well as the
“Search” button enabled.

JMT Documentation

The JMT Library deliverables include extensive documentation, covering both the classes themselves
and their related Schema definitions. This documentation is shown in the following figures:

% HealthCare.CRecvl 0 I [E=EE
& M
Hide Locate Pint Options

Corterts | index | Search | Favortes |

= {[) HealthCare.CRecxv1_0 Assembly HealthCare.CRec.vl_0 Assembly
] ovenview] ¥ Collapse Al

B () Namespaces
= QQ JmtHealthCare.CRecv1_0.Element ! 4 NEmESPECES
Overview
@ Classes Namespace Description
=2 Qz HealthCareSchema Schema Schema
Overview
B ([Elements
@ DescriptorList Element
[?] Record Element

Jmt.HealthCare.CRec.v1_0.Element

Send Feedback

Figure 23 Top-level Documentation Sample

© Copyright 2013, Jet Messaging Technologies AG 16/18

Developer Benefits — JMT Library

July.2013

& HealthCare.CRecvl 0

= @] = |

= = i
Hide Locate Back Fomward Prnt Options

Contents Ilﬂda | §eard1| Favon_tesl

= @ HealthCare.CRecv1_0 Assembly

@ Operators

@ DescriptorList DescriptorListSeqType_

Q DescriptorList DescriptorListSeqType_ DescriptorltemTyps
@ DescriptorList DescriptorListSeqType_ DescriptoritemType
@ DescriptorList DescriptorListSeqType_ DescriptoritemType
@ DescriptorList DescriptorListSeqType_ DescriptoritemType
@ Record

@ Record RecordSeqType_

@ RecordRecordSeqType_AdminSectionType_

Q Record RecordSeqType_ AdminSectionType_ AdminSectic
@ RecordRecordSeqType_AdminSectionType_AdminSectic
Q Record RecordSeqType_ AdminSectionType_ AdminSectic
@ RecordRecordSeqType_AdminSectionType_AdminSectic
Q Record RecordSeqType_ AdminSectionType_ AdminSectic
@ Record.RecordSeqType_AdminSectionType_AdminSectic
Q Record.RecordSeqType_AdminSectionType_ AdminSectic
@ Record.RecordSeqType_AdminSectionType_AdminSectic
Q Record.RecordSeqType_AdminSectionType_ AdminSectic
@ Record RecordSeqType_AdminSectionType_AdminSectic
Q Record.RecordSeqType_AdminSectionType_ AdminSectic

[&
[D
[D
[s

4 Inh

Imi

Targ
2008

oy

HealthCare.CRec.vl,

DescriptorList Class

[2) oveniew Members ¥ Collapse All ¥ Language Filter: All
= @ Namespaces . .
= m ImtHealthCare CRecy1_0.Element Namespace Imt.HealthCare.CRec.v1_0.Element Namespace : DescriptorList Class
[Ovenview
= I[] Classes This represents a list of sample data items. A data item includes a Term and Link; the former
= () DescriptorList = references the Weight as well as the Candidate information.
[2) ovenview
Members 4 Syntax
@ DescriptorList Constructor
3 Memud_s c#
@ Properties

[¥mlRootAttribute (ElementName="descriptorListType", Namespace:

public class DescriptorList

System.Object

Jmt.HealthCare.CRec.vl 0.Element.DescriptorList

4 Requirements

or later), Windows Server 2003 SP2

@ Record RecordSeqType_AdminSectionType_AdminSectic 4 See Also
Q Record.RecordSeqType_AdminSectionType_ AdminSectic
@ Record.RecordSeqType_AdminSectionType_AdminSectic ~ Reference

eneratedCodelittribute (Tool="CodeConstruction", Version="2.0.
ebuggerStepThroughAttribute ()]

esignerCategoryAttribute ("code™)]

erializableRttribute ()]

mn

Jmt.MessageDefinitionProcessor.]

eritance Hierarchy

t.MessageDefinitionProcessor.TypeSupport.ElementBase

et Platforms: Windows 7, Windows Vista SP1 or later, Windows XP SP3, Windows Server
(Server Core not supported), Windows Server 2008 R2 (Server Core suppaorted with SP1

<1

Figure 24 Class-level Documentation

[HealthCare.CRecv1 0

= (B R]

& = O~
Hide locate Back Fowad Pant Options
Contents | index | Search | Favortes | HealthCareSchema Schema Schema
B) HealthCare CRecv1_0 Assembly Record Element
[2] overview » Collapse All

@ Namespaces
=] 02 HealthCareSchema Schema Schema
[7] overview
B] Elements
DescriptorList Element
Record Element

HealthCareSchema Schema Schema : Record

4 Description

abstracts related to the drug.
MNamespace (none)

4 Diagram

<> Record

UID:: required s

4 Qverview

<> Record

uD xsinteger
= Sequence
<> Adminsection

This represents the Adm

= Sequence
<> Record

<> Fulttext

This represents a Record for a drug item and contains Administration and Public information as well as detailed information on published

This represents a Record for a drug item and contains Administration and Public information as well as detailed information on
published abstracts related to the drug.

well as the Category and Archive number for the main product information.

(i

Element

<> AdminSection
<> PublicSection

Sequence

<> ContentSection

inistration information related to a named drug. It contains the details of Copyright and Originator as

T

Figure 25 Schema-level Documentation

© Copyright 2013, Jet Messaging Technologies AG

17/18

Developer Benefits — JMT Library July.2013

JMT Examples
As part of the JMT Library deliverables a range of examples will be provided. These will exemplify
key concepts in using the JMT types, from ‘getting started’ to ‘advanced’ level.

© 07/2013 Jet Messaging Technologies AG
All rights reserved.

Jet Messaging Technologies AG
Rotwandstrasse 35, 8004 Zurich, Switzerland
Phone +41 79 176 89 80

Email info@jet-messaging.com
www.jet-messaging.com

© Copyright 2013, Jet Messaging Technologies AG 18/18

