

Record: Thread milling/	Tapping
-------------------------	----------------

Date:	2009-09-03	Material: HARDOX 500	M	aterialdata
		Thickness	30	mm
		Hardness in Brinell 4-32 mm	470-530	HBW
		Hardness in Brinell 32-80 mm		HBW
		Hardness in Rockwell	49	HRC
		Sträckgräns (Yield strength)		
		Brottgräns (Tensile strength)		
		Chargenr. 87090	Serialnr. 35	40206

Machine info

Type of machine		Fadal VMC 4020		
Location for machining		LAB		
Type of drill chuck		Hydrogrip chuck from Sandvik Coromant		
Type of attachment for the too	ol in the machine	ISO 40		
Effect on the spindle motor	16.8 kw	Coolant mix	7 %	

Tap/thread milling tools info

Manufacturer / Distributors	SPPW / SMICUT		Type of tap/	thread milling too	ol				
Name on tap/thread milling tools	NB1212D35 2.0 ISO AC		NB1212D35 2.0 ISO AC		tap/thread milling tools NB1212D35 2.0 ISO AC		HSS-P		
Pitch of thread/course Range	2.0 M2 – M36		HSSE-PM						
Tap for blind or through holes	Blind and through		HSSE, HSS-Co						
Article number	NB1212D35 2.0 ISO AC		Helix angle/ Straight tap (S)		15°				
Size on the tap/thread milling tool	M16		Thread milling too	ols with insert					
Type of coating	TiAICN		Solide carbide tap)					
Number of flute on the tool	4		Solide carbide thr	ead milling tools	Х				
Internal/External coolant	External		Thread forming ta	ар					
Lubrication (thread paste/oil or coolant)	Coolant		Type of insert						

The thread will be burr free and you don't need to chamfer the thread.	Thread attempt		Number of passes (radial) is 2. In the first cut we have 2/3 in engagement and in the second cut we have 1/3, that's the reason why we have 2 different feed rate.
Speed (n)	1326	rpm	Comment: Test 3 (THROUGH HOLES)
Cutting speed (Vc)	50	m/min	(More vibrations in this test compare to test 1 and test 2)
Feed rate (vf) first cut 2/3	44	mm/mir	After 14 threaded holes there's wear/chip on the
Feed rate (vf) second cut 1/3	51	mm/mir	lower cutting edges and also 1 big chip on of the
Feed rate (fz)	0.033/0.038	mm/rev	cut/flute. After 28 holes the thread is good down
Diameter on the drilled holes	14.2	mm	to Z- 25mm and the wear/chip is about the same
Total threaded holes	84	st	as after 14 holes. After 56 holes the wear/ chip is
Total thread length	2520	mm	about the same as before but there are now also some
Cost of tap/thread milling tool	2494	SEK	wear on the cutting edges in the centre of the tool, the
Cost of insert		SEK	thread is even now good down to Z -25 mm. I stop the
Cost per hole	30	SEK	thread attempt after 84 holes, the chip/wear is about
		-	the same and the thread is still good down to Z-25.
			Reinar Schimdt was here under the test (SEE PHOTO)

Reinar Schimdt was here under the test. (SEE PHOTO)
The last 14 holes we going up on Z to see if we have less
of vibration than we have in test 1 and 2, there we did

of vibration than we have in test 1 and 2, there we d the thread burr free, but there are no difference.

Date: 2009-09-04 Material: HARDOX 600	Materialdata
---------------------------------------	--------------

Thickness	30	mm
Hardness in Brinell	570-640	HBW
Hardness in Rockwell	55	HRC
Sträckgräns (Yield strength)		
Brottgräns (Tensile strength)		
Chargenr. 79104	Serialnr. 2414065	

Machine info

Type of machine		Fadal VMC 4020		
Location for machining	for machining		LAB	
Type of drill chuck		Hydrogrip chuck from Sandvik Coromant		
Type of attachment for the too	ol in the machine	ISO 40		
Effect on the spindle motor	16.8 kw	Coolant mix	7 %	

Tap/thread milling tools info

Manufacturer / Distributors	SPPW / SMICUT		Type of tap/	thread milling too	ol		
Name on tap/thread milling tools	NB1414D33 2.5 ISO AC		ne on tap/thread milling tools NB1414D33 2.5 ISO AC		HSS-P		
Pitch of thread/course Range	2.5 M2 – M36		HSSE-PM				
Tap for blind or through holes	Blind and through		HSSE, HSS-Co				
Article number	NB1414D33 2.5 ISO AC		Helix angle/ Straight tap (S)		15°		
Size on the tap/thread milling tool	M20		Thread milling too	ols with insert			
Type of coating	TiAICN		Solide carbide tap)			
Number of flute on the tool	4		Solide carbide thr	ead milling tools	Χ		
Internal/External coolant	External		Thread forming ta	р			
Lubrication (thread paste/oil or coolant)	Coolant		Type of insert				

The thread will be burr free and you don't need to chamfer the thread. **Thread attempt** Number of passes (radial) is 2.

In the first cut we have 2/3 in engagement and in the second cut we have 1/3, that's the reason why we have 2 different feed rate.

Speed (n)	796	rpm	Comment: Test 1 (THROUGH HOLES)
Cutting speed (Vc)	35	m/min	Very slight wear after 8 holes. After 24 threaded
Feed rate (vf) first cut 2/3	28	mm/min	holes there is a small chip on 1 of the cut/flute
Feed rate (vf) second cut 1/3	31	mm/min	and the wear is smooth over the other cutting
Feed rate (fz)	0.035/0.039	mm/rev	edges and I also adjust the diameter with 0.03
Diameter on the drilled holes	18	mm	because of the wear/chip. After 32 holes there's
Total threaded holes	64	st	about the same wear/chip and I adjust the \varnothing
Total thread length	1920	mm	with 0.05 and after 40 I adjust \varnothing with 0.05 and
Cost of tap/thread milling tool	2818	SEK	further with 0.07 after 48 holes and the wear
Cost of insert		SEK	chip is about the same. I stop the thread milling
Cost per hole	44	SEK	attempt after 64 threaded holes. (SEE PHOTO)
			I have Reinar Schimdt from the company SMICUT/

After 4-6 holes when the cutting edges has some wear the sound from the vibration stop.

SPPW with me under the test.