
IPPS-015 series Intelligent Pressure Sensor

Features

- □ Supply Voltage 2.0 to 3.6V
- □ 300 to 1100 hPa pressure range
- □ Low standby current: <0.1µA
- Factory calibrated and temperature compensated
- □ SPI and I2C digital signal output

The IPPS-015 is a intelligent pressure sensor which consist of a MEMS piezoresistive pressure sensor and a signal conditioning ASIC. The sensor is formed in a ultra thin 8 pin LGA package. The package dimension is 4.5x4x1.1mm. The signal conditioning ASIC is a

Applications

- Digital barometer and altimeter
- □ Weather forecast station
- □ Mobile phones
- □ Personal navigation devices(PND)

16-bits AD convertor with embedded 512 bits OTP memory. The sensor was calibrated and temperature compensated in factory. The factors for temperature compensation were stored in OTP memory. Users can implement temperature compensation via an external micro processor. The external microprocessor read the raw output data from IPPS-015 and do simple calculation according to the factors stored in OTP memory. Therefore using IPPS-015 series is easy to get rid of bothersome calibrations and temperature compensations. IPPS-015 provide SPI or I2C digital serial output interface to communicate with microprocessors. IPPS-015 series is specially designed for low voltage and low power consumption concerned applications.

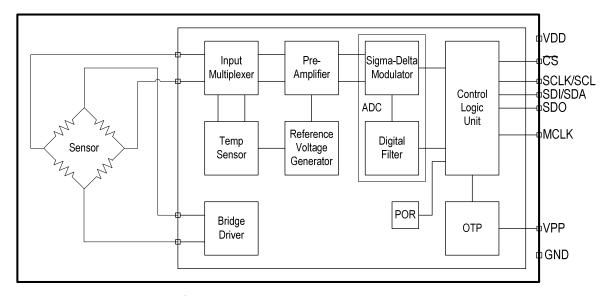
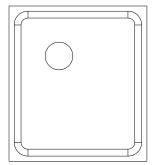


Fig. 1 Functional Block Diagram of IPPS-015

Rev. 1.0 2013/3/26

Specifications


Parameter	Symbol	Conditions	Min	Тур	Max	Units	Notes
1. Absolute Maximum Ratings				- 71-			
Supply Voltage	VDD		-0.3		4	V	
Inputs voltage to VSS			-0.3		VDD+0.3	V	
Storage Temperature Range			-40		125	°C	
						Rated	
Maximum Overpressure					2X	pressure	
ESD Rating							
НВМ			4000			V	
MM			400				
2. Recommended Operating Conditions		1			1	1	
Pressure Range			300		1100	hPa	mbar
Operating Temperature Range			-40		85	°C	
Humidity			0		95	%RH	
Supply Voltage	VDD		2.0	3	3.6	V	
Supply Current		VDD=3V					
Peak Current During Conversion	I _{sc}			600		μA	
Standby	l _{ss}			0.1	0.5	μA	
Average	l _{avg}	1 conversion/s		21.6	30.5	μA	
Conversion Time	t _{conv}	MCLK=32.768kHz		34.5	05000	ms	
External clock signal	MCLK		30000	32768	35000	Hz	
Duty cycle of MCLK	0.01.1/		40	50	60	%	
Serial data clock	SCLK				500	kHz	
3. Electrical Parameters							
Analog to Digital Converter				10	1	Dite	
Resolution			0040	16	00407	Bits	
Output Code Range			2048		63487		TBD
Integral Nonlinearity Differential Nonlinearity			-4 -1		+4 +1	LSB LSB	TBD
Digital Interface			-1		+1	LOD	
Digital Inputs							
Serial data clock					500	kHz	
Input High Voltage	VIH	I _{IH} < 5µА	80%VDD		VDD	NI IZ	
Input low Voltage	V _{II}	I _{II} < 5μΑ	0		20%VDD		
Input leakage current	• 12				0.1	μA	
Rise time	tr				200	nS	
Fall time	t _f				200	nS	
Digital Outputs	-						
		SDO,					
Output High Voltage	V _{OH}	Isource=0.6mA	80%VDD				
Output low Voltage	V _{OL}	SDO, sink=0.6mA			20%VDD		
Output low Voltage	V _{OL}	SDI, Isink=1.0mA			20%VDD		
Rise time	tr	C _{load} = 50pf			200	nS	
Fall time	t _f	C _{load} = 50pf			200	nS	
Pressure Output Characteristics		·					
Resolution				0.045		hPa	
		p = 700~1100 hPa	0 F		2.5	bDo	2
Absolute Pressure Accuracy		Ta = 0∼65°C	-2.5		2.0	hPa	2
Australia i ressure Auturaty		p = 300~1100 hPa	-3		3	hPa	
		Ta = 0∼65°C	-0		5	ma	
Relative Pressure Accuracy		p = 700~1100 hPa	-0.5		0.5	hPa	3
		Ta = 25℃	0.0		0.0		
Noise in pressure				0.035		hPa	RMS noise⁴
Soldering drift	1	After solder reflow	-2		2	hPa	
Rev. 1.0 2013/3/26	1	2	-		. –		

Rev. 1.0 2013/3/26

Long term stability	12 months	-1		1	hPa	
Recovery time after reflow			7		days	5
Temperature Output Characteristics						
Resolution			0.1		°C	
Accuracy	-40 to 85 °C	-2		2	°C	
Notes :						
1. Unless otherwise specified, measurements were	e taken with a supply volta	ge of 3 Vdc at	a temperatui	re of 25	±3℃ and	
humidity ranging from 0 \sim 95 $\%$ RH.						
2. Maximum error of pressure reading over the pre	essure range.					
Maximum error of pressure reading over the pressure reading over the pressure reading over the pressure reading.		ljustment at o	ne pressure p	point.		
4. The noise data was calculated as standard devia						
5. Time to recovering >66% impact of solder reflor	W					

Pin Configuration and Function Descriptions

Fig. 2 Pin configuration of IPPS-015

Pin No.	Pin Name	Description					
1	SCLK/SCL	External Clock Input. This clock synchronizes serial data I/O.					
2	GND	Ground.					
3	\overline{CS}	Chip Select Input. Control data conversion timing and enables the seria input/output register.					
4	VPP	OTP Programming Voltage.					
5	VDD	Power Supply.					
6	MCLK	External Clock Input. This clock runs the A/D conversion process.					
7	SDI/SDA	SPI Serial Data Input I2C data I/O					
8	SDO	SPI Serial Data Output. Data is shifted on the RISING edge of SCLK. This output is high impedance when CS_ is HIGH.					
Note! Pin4 was u							

Ordering information

IPPS

- <u>01</u>	<u>5 A</u>	С
		A
		—B

А	Pressure type	В	Pressure range
А	Absolute	015	300-1100hPa
С	Interface		
Ι	I2C		
S	SPI		

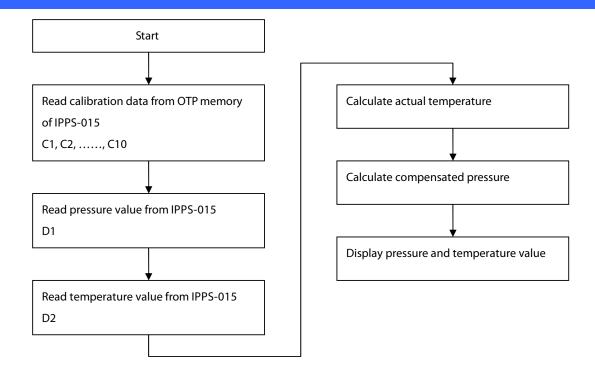
Part No.	Pressure type	Pressure range	Digital interface	Note
IPPS-015AI	Absolute	300-1100hPa	I2C	
IPPS-015AS	Absolute	300-1100hPa	SPI	

Application Information

General

The IPPS-015 is SIP device consisted of a MEMS pressure sensor and a signal conditioning ASIC. A 16-bits ADC is used to convert analog pressure and temperature signal to a 16-bits digital data. Due to the strong temperature coefficient of sensor output voltage, it is necessary to be compensated for practical applications. By a dedicated program running at an external microcontroller, this compensation will be performed.

Factory calibration


Each sensor was individually calibrated in the factory. There are several coefficients stored in OTP memory for compensation. Resulted from process variation and temperature variation of sensor, the coefficients are read by microcontroller and calculated by software to correct temperature drift of sensor.

Pressure and Temperature Measurement

The sequence of reading pressure and temperature as well as software compensation is shown as fig. 3.

First the coefficients C1 to C10 have to be read from OTP memory via serial interface. This can be done once reset the IPPS-015. The data format of coefficient is unsigned 16-bit. In order to measure pressure, the microcontroller have to read the 16 bit data for pressure(D1) and temperature(D2). Then, the microcontroller calculate the compensated pressure by D1, D2, and coefficients C1 to C10. The general flow for temperature compensation calculation was listed as fig. 3.

Rev. 1.0 2013/3/26

Fig. 3

Decoupling Capacitor

The decoupling capacitors, $0.\mu$ F ceramic plus 1μ F tantalum capacitor, have two placed as close as possible to the IPPS-015 VDD and GND pin. This capacitor will stabilize the power supply during data conversion and thus, provide the highest possible accuracy.

Application Circuit example

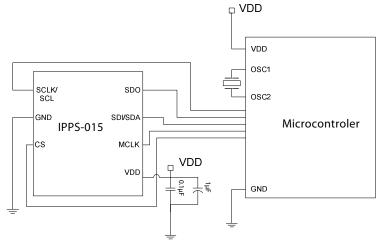
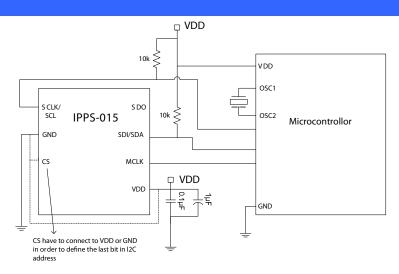



Fig. 4 Typical application circuit of IPPS-015 in SPI mode

Rev. 1.0 2013/3/26

Serial Interface

The IPPS-015 can provide two types of serial interfaces as SPI or I2C. The type of serial interface is defined as the device manufactured. The user can't choose the type of serial interface by hardware wiring. So the user have to decide the type of serial interface as ordering the device.

SPI Interface

The IPPS-015 have a SPI (Serial Peripheral Interface) bus to communicate with the microprocessor and other digital systems. The functional block diagram of MIS-7300 was shown as fig.1. The SPI bus consists of four wires as SCLK, SDI, SDO, CS.

Serial Clock Input

The SCLK is the serial clock input for the device, and all data transfers (either on SDI or SDO) occur with respect to the SCLK signal. Each bit is shifted out of the SDO pin on the falling edge of SCLK and data is shifted into the SDI pin on the rising edge of SCLK. The SCLK-signal is generated by the microprocessor's system.

Chip Select Input

The CS (Chip Select Input) is an active low logic input used to select the IPPS-015. The CS can be used to select the IPPS-015 in systems with more than one device on the serial bus or as a frame synchronization signal in communicating with the device. CS can be hardwired low, allowing the IPPS-015 to operate in 3-wire mode with SCLK, SDI, and SDO used to interface with the device.

Serial Data Output (SDO)

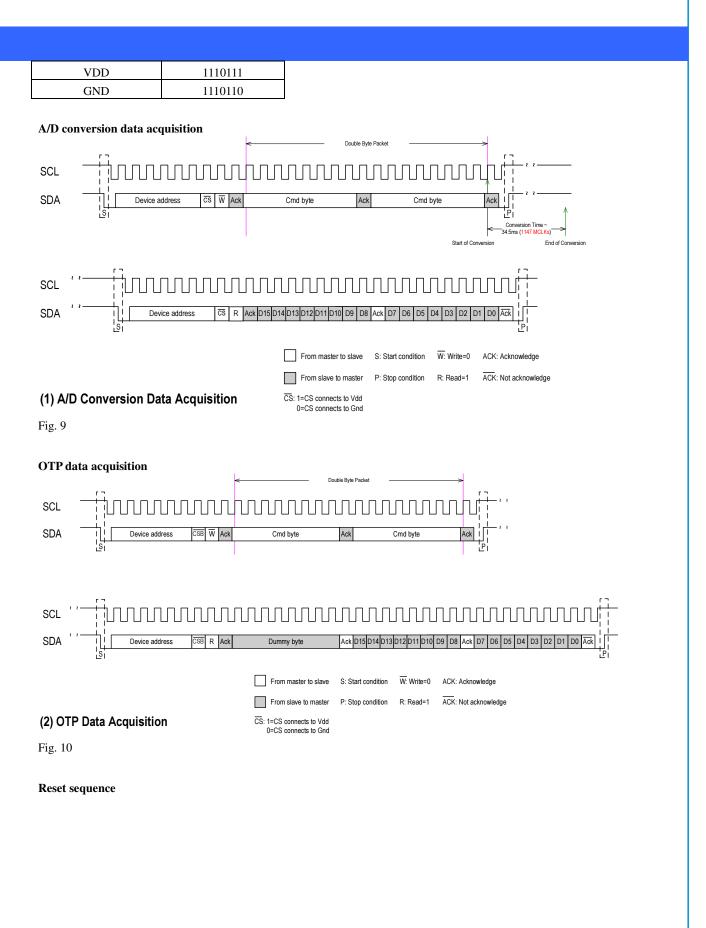
The SDO pin provides the result of the last conversion as a serial bit stream during the data output state. In addition, the SDO pin is used as an end of conversion indicator during the conversion. When CS is HIGH, the SDO driver is switched to a high impedance state in order to share the data output line with other devices. If CS is brought LOW during the conversion phase, the SDO pin will be driven HIGH. Once the conversion is complete, if CS is brought

Rev. 1.0 2013/3/26

LOW, SDO pin will be driven LOW indicating the conversion is complete and the result is ready to be shifted out of the device. The digital data sent by IPPS-015 SDO pin is either the conversion results or the calibration data stored in OTP. The selection of the output data is done by sending the corresponding instruction on the SDI pin. Serial Data Input (SDI)

The SDI pin is used to select the input channel (Pressure or Temperature) and to access the OTP memory. Data is shifted into the device during the data output/input state on the rising edge of SCLK while CS is low.

٢S SCLK SDI 0 B110B10 B5 B4 B3 B2 B1 B0 SDO(D1) D15D14D13D12D11D10D9D8D7D6D5D4D3D2D1D0 SDO(D2) D15D14D13D12D11D10D9D8D7D6D5D4D3D2D1D0 (1) A/D Conversion Data Acquisition End of C Fig.6 CS SCLK SDI 0 B110B10 B09 B8 B7 B6 B5 B4 B3 B2 B1 B0 0 SDO(O) D15D14D13D12D11D10D9D8D7D6D5D4D3D2D1D0 (Odd A SDO(E) D15D14D13D12D11D10D9D8D7D6D5D4D3D2D1D0 (2) OTP Data Acquisition Fig.7 CS SCLK SDI 0 B150B14 B03 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 DON'T CARE? SDO (3) RESET Sequence Fig. 8


Timing Waveform Diagrams

I2C Interface

Typical I2C communication starts with the start condition and is ended with the stop condition. The device address consisted of six pre-defined bits plus a pin defined bit. The device address is 111011C. The value of C is determined by the \overline{CS} pin connected with VDD or GND.

CS	connected to	Device address	
Rev. 1.0	2013/3/26		7

Rev. 1.0 2013/3/26

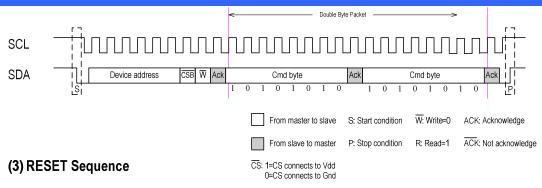


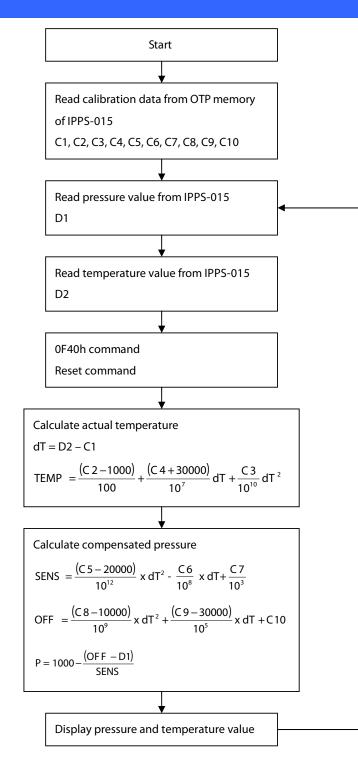
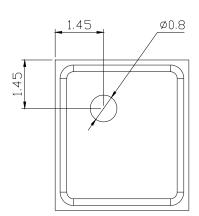
Fig. 11

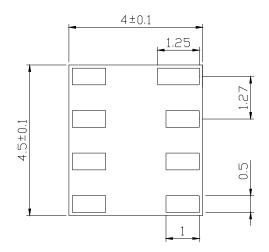
Pressure and temperature reading instructions

Here we will give several examples to introduce reading pressure, temperature and calibration coefficients. All the commands for pressure, temperature and coefficients reading is listed as following table.

Action	Instruction	
	SPI mode	I2C mode
Conversion start for pressure measurement ($\rm D1$)	0Fh & 51h	0Fh & 51h
Conversion start for temperature $\mbox{measurement}(\mbox{D2})$	0Fh & 21h	0Fh & 21h
Reset	0Ah & AAh & A0h	AAh & AAh
Reading coefficient C1	1Ch & 40h	0Eh & 20h
Reading coefficient C2	1Ch & 50h	0Eh & 28h
Reading coefficient C3	1Ch & 60h	0Eh & 30h
Reading coefficient C4	1Ch & 70h	0Eh & 38h
Reading coefficient C5	1Ch & 80h	0Eh & 40h
Reading coefficient C6	1Ch & 90h	0Eh & 48h
Reading coefficient C7	1Ch & A0h	0Eh & 50h
Reading coefficient C8	1Ch & B0h	0Eh & 58h
Reading coefficient C9	1Ch & C0h	0Eh & 60h
Reading coefficient C10	1Ch & D0h	0Eh & 68h

Rev. 1.0 2013/3/26


Fig. 12

Rev. 1.0 2013/3/26

Package Outlines

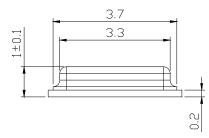
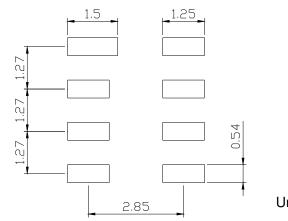
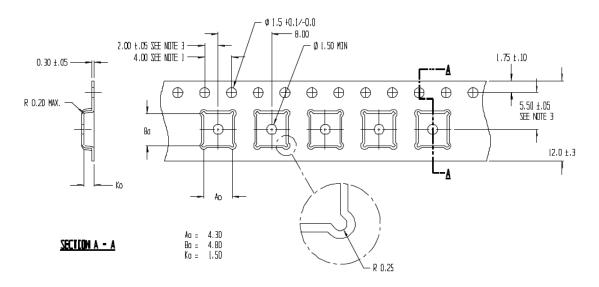
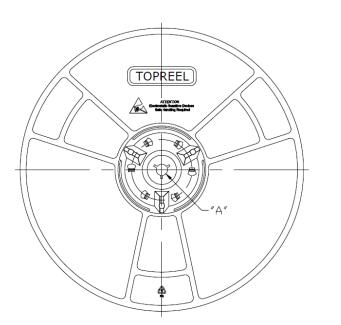
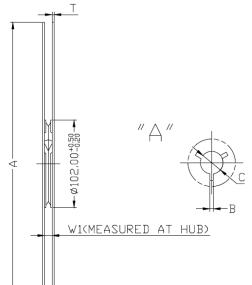



Fig. 13

Recommended footprint




Rev. 1.0 2013/3/26



■ Tape specification

Reel specification

XX is for RB/SW/BK/BL/RC

Part Number	Nominal Hub Width	A ^{+0.5mm} 0.2mm	T ^{+0.5mm} 0.2mm	C ^{+0.5mm} 0.2mm	B ^{+0.5mm} 0.2mm	W1 ^{+0.6mm} 0.4mm
XX13412-A	12.0mm				nm 2.0mm	12.8mm
		330.0mm	2.30mm	13.1mm		
-						

Rev. 1.0 2013/3/26

We are here for you. Addresses and Contacts

Sales Switzerland 8	Liechtenstein	Sales International	Sales International Key Accounts			
Matthias Rüegg Ruhbergstrasse 32 CH-9230 Flawil Phone + 41 44 877 35 18 Mobile + 41 76 491 66 66 Fax + 41 44 877 35 19		Peter Felder Thurgauerstrasse 66 CH-8052 Zürich Phone + 41 44 877 35 05 Mobile + 41 79 406 49 83 Fax + 41 44 877 35 25				
matthias.rueegg@pewatron.com	1	peter.felder@pewatron.com				
Sales Germany			Sales Austria			
Postcode 60000-79999	Postcode 10000 –59999 Postcode 80000 –99999	Key Accounts Aerospace and Defence				
Dieter Hirthe Mühlweg 23 D-71554 Weissach i.T.	Kurt Stritzelberger Neumarkter Str. 86a D-81673 Munich	Claus Wübbena Vogelkamp 26 D-26655 Westerstede	Kurt Stritzelberger Neumarkter Str. 86a D-81673 Munich			
Phone + 49 719 149 60 58 Mobile + 49 163 762 74 30 Fax + 49 719 193 31 88	Phone + 49 89 260 38 47 Mobile + 49 171 803 41 35 Fax + 49 89 43 10 91 91	Phone + 49 4488 5204 614 Mobile + 49 173 9700 691 Fax + 49 4488 5204 616	Phone + 49 89 260 38 47 Mobile + 49 17 18 03 41 35 Fax + 49 89 43 10 91 91			

dieter.hirthe@pewatron.com

kurt.stritzelberger@pewatron.com

claus.wuebbena@pewatron.com

kurt.stritzelberger@pewatron.com

Sales Other Countries / Product Management

Sensors

Physical Sensors Data Acquisition

Thomas Clausen Phone + 41 44 877 35 13 thomas.clausen@pewatron.com

Geometrical Sensors

Eric Letsch Phone + 41 44 877 35 14 eric.letsch@pewatron.com

Power Supplies

DC-DC Converters Switching Power Supplies DC-AC Inverters

Sebastiano Leggio Phone + 41 44 877 35 06 sebastiano.leggio@pewatron.com

E-Components

Current Sensors Man Machine Interface Measurement Probes

Sebastiano Leggio Phone + 41 44 877 35 06 sebastiano.leggio@pewatron.com PEWATRON AG Thurgauerstrasse 66 CH-8052 Zurich

Phone + 41 44 877 35 00 Fax + 41 44 877 35 25

www.pewatron.com info@pewatron.com