
F5 TESTING METHODOLOGY

CREATING A ROBUST PERFORMANCE
TESTING METHODOLOGY

 Introduction to Performance Testing ...1

Designing Meaningful Tests and Avoiding Bias ..1

Goals/Scoping: “What do you want to achieve?” ..1

Methodology/Planning: “How do you plan to achieve it?” ...2

Implementation/Execution: “Doing what you planned” ...2

Validation/Evaluation: “Did you achieve your goals?” ..3

Results/Interpretation: “What does the output of the testing mean?” ..3

Types of Performance Tests, and Why to Run Them ..3

Terminology ..3

TCP Three-Way Handshake (3WHS) ..3

Connection (as in “Connections per second”) ...3

Request (as in “Requests per second”) ..4

Open Connection ...4

Throughput ..5

Latency / Time-To-Last-Byte (TTLB) ...5

L4 versus L7 ..6

Basic Tests ...6

Connections/Requests per Second ..6

Concurrent Connections ...6

Throughput ..6

Advanced Tests ...7

SSL ...7

Caching ..7

Compression ..7

Mixed ...8

Vendor-Specifi c ..8

Deployment-Specifi c ...8

Spotting Biased or Broken Testing ...8

I Live In The Real World and Not A Lab: What Do I Do? ...9

Example Scenario ...10

CREATING A ROBUST PERFORMANCE TESTING METHODOLOGY

About This Document

This document is a collection of high-level performance testing guidelines, including how to design appropriate tests, how to spot
biased tests, and how to apply this information to real world scenarios. To avoid confusion and limit scope, this document assumes
that the performance of an Application Delivery Controller (such as the BIG-IP LTM) is being evaluated.

Table of Contents

F5 TESTING METHODOLOGY

F5 TESTING METHODOLOGY

 1

CREATING A ROBUST PERFORMANCE TESTING METHODOLOGY

 Introduction to Performance Testing
Successful performance testing requires a good deal of time and experience. It is a common mistake to assume testing the
performance of Application Delivery Controllers (ADC’s) is a simple task that can be conducted by any technical person with the
appropriate equipment in a few weeks time. Performance testing requires a signifi cant amount of forethought and diligence, as
well as a high level of knowledge regarding the devices and protocols to be tested, and an intimate familiarity with the tools used
to do the testing. It’s easy to see how comprehensive and meaningful performance testing is largely relegated to a select group of
experts, while many assume it should be no problem for any engineer to produce meaningful performance metrics after only a day
or two of testing.

With that said, just about anyone can learn to conduct successful performance testing of ADC’s. The most important factor (by far),
is time. Having enough time to properly design, implement, run, tune and evaluate the test methodology, environment, devices and
results is the key to success in performance testing.

In addition to time, there is one other indispensable factor when evaluating performance: forethought. Forethought implies
thorough goal analysis, planning and proactive problem solving. Forethought would be regarded as more essential than time,
except that a failure to think ahead can, to a degree, be compensated for if you have enough time.

The importance of these two key elements, time and forethought, will be reiterated throughout this document.

 Designing Meaningful Tests, and Avoiding Bias
There are fi ve steps to achieving success in any evaluation that includes performance.

1. Goals/Scoping

2. Methodology/Planning

3. Implementation/Execution

4. Validation/Evaluation

5. Results/Interpretation

Even one-off tests that can be completed in an hour to obtain a single metric still require these steps in order to be meaningful; the
only thing that changes as the test size increases is the time spent on each step.

1. Goals/Scoping: “What do you want to achieve?”

Successful performance testing requires a clear set of narrowly defi ned objectives (goals). Success requires that goals be achieved,
and to be achieved, goals must fi rst be defi ned. Success achieving overly broad goals is not really success. In order to be useful
goals must refl ect what it is you really hope to learn from the testing. The majority of all incomplete test plans fail at this step by not
taking into account the bigger picture: their goals.

Well designed goals have the following characteristics:

Problem/solution oriented
Each test should be clearly sourced from a problem, or set of related problems. The reason to conduct performance testing is to
evaluate the capabilities of a device in order to address specifi c business and/or technical requirements. For example, if a specifi c
business requirement is to support 1000 concurrent users, a test that determines the throughput capabilities of the device are
unlikely to aid in that discovery. Testing goals that are not created to solve problems are more likely to fall prey to unfair or illogical
bias, so having a clear problem/solution relationship when designing goals is key.

Describes success criteria for a single test or set of related tests
Each goal should state what problem is being solved, what specifi cally is being tested, and the defi nition of success for that goal.

Parity with the actual use case
Test goals should describe what the device being tested will ultimately be subjected to (i.e. they should be “real world”). If your
goal is to enhance the speed of your web-based applications through the use of optimization technologies, a test of “TCP-only”
connections/second without HTTP requests and responses is not helpful, and will tell you little or nothing about what to expect once
the device is implemented. Goals that do not meet this requirement are likely the result of shortened time-lines, lack of forethought
or expertise, and/or political objectives or ideologies.

F5 TESTING METHODOLOGY

 2

CREATING A ROBUST PERFORMANCE TESTING METHODOLOGY

Designed independent of any vendor’s capabilities
All stated goals should be created solely with the use case objectives in mind, without regard to the capabilities of any given vendor.
Any testing designed based on or around a particular vendor’s devices is inevitably going to be biased. The test goals should not
defi ne how the device solves the problem, only what the characteristics of success are.

The following are examples of good test goals:

The following are examples of ineffective test goals:

Proper goal setting is the cornerstone of performance testing, and will make or break the rest of your efforts.

Number of successfully fulfi lled HTTP requests for ‘/index.html’ (5KB), using SSL (RC4-MD5) between the client and
DUT (Device Under Test), and with HTTP compression enabled. At a minimum, the device should be capable of
sustaining 10,000 HTTP requests per second from 5,000 different IP addresses (clients), with not more than 5 requests
per TCP connection. Vendors will be ranked based on compression ratio.

Total L2 throughput of requests for a web page (243KB) and 5 images (8KB each); the page must come from one
group of servers and the images must come from another group. The device must support 2 Gbps of sustained
throughput, and 10 second bursts of up to 3 Gbps. Vendors will be ranked based on time-to-last-byte (TTLB).

Maximum concurrently open user connections for three different network types: dial-up (56Kbps, 100ms latency,
1% loss), DSL (768/384Kbps down/up, 20ms latency, 0% loss) and LAN (no WAN emulation), using three different
reference fi le sizes on each network type: 128B, 2KB and 8KB. The device must scale linearly as the fi le size increases
on each network type, and must maintain a time-to-last-byte (TTLB) of no more than 5 seconds. Vendors will be
ranked based on TTLB averaged together for all sizes.
 **Note that this is actually 9 individual tests, but that they are still clearly defi ned.

•

•

•

L2 throughput, using a single if/then type rule.

Number of connections/second.

Concurrent users with <insert vendor-specifi c function/feature>, or equivalent, enabled.

•

•

•

2. Methodology/Planning: “How do you plan to achieve it?”

Once you have a well thought out list of goals, designing a methodology becomes an almost automatic process. In general, the
methodology should be as simple as possible while clearly articulating how to accomplish the stated goals. The methodology
includes the specifi c individual tests to be run based on your goals, as well as the confi guration settings of the devices being tested
and the load testing tools (and any other devices necessary to run the tests). Complexity should be avoided in the methodology,
while ensuring all parties involved understand it, and preferably agree with it (vendors, customer, etc.).

Having an established and agreed upon methodology is critical for any performance testing, because it is the pillar that all your
conclusions are based on. Having the agreement of everyone involved in the testing prior to running the fi rst test helps preclude
anyone from disputing the results.

 3. Implementation/Execution: “Doing what you planned”

The tests should be run as outlined in the methodology, in a transparent fashion providing visibility for everyone who has a stake
in the testing. Performance testing generally takes more time than originally anticipated, since there are many separate devices
involved in any one test. Inevitably, there are going to be issues with the test environment (switches, cables), load testing tools
(confi guration, bugs, performance limits), devices being tested (confi guration, bugs) and possibly the methodology. Each vendor
should be included in the testing to ensure that issues with their devices are resolved quickly, and that they are tuned for maximum
performance.

Failing to seek cross-vendor input in any one of the steps up to and including this one is inevitably going to result in biased or
inaccurate testing unless the tests are conducted by experts with years of experience in the fi eld of performance testing Application
Delivery Controllers.

F5 TESTING METHODOLOGY

 3

CREATING A ROBUST PERFORMANCE TESTING METHODOLOGY

 Types of Performance Tests, and Why to Run Them

 Terminology

Terminology is extremely important when doing performance testing. Not having an agreed upon set of defi nitions for commonly
used terms can be disastrous, especially when they attempt to describe specifi c metrics. It’s imperative that everyone involved in
the testing understand and agree on the meaning of general terms used to defi ne and discuss the testing. What follows is a list of
commonly used terms, along with possible and recommended defi nitions.

 TCP Three-Way Handshake (3WHS)

Defi nition
When dealing with TCP connections, a 3-way handshake is the process to open a connection between two hosts. In TCP, a 3-way
handshake must occur before any data can be exchanged. For example, a web browser must fi rst open a TCP connection before it
can send an HTTP request.

A TCP 3-way handshake consists of a TCP/IP packet with the TCP SYN fl ag set from the originating host (client) destined for a remote
host (server). The remote host responds with a TCP/IP packet with the TCP SYN and ACK fl ags set, and then the originating host
sends a fi nal ACK. These three steps (SYN, SYN/ACK, ACK) are referred to as a TCP three-way handshake (also known as 3-way
handshake or 3WHS).

 Connection (as in “Connections per second”)

Possible defi nitions:

Recommended defi nition:
Full TCP connection establishment (3WHS), HTTP request & response (complete HTTP transaction) and TCP close (FIN, ACK, FIN, ACK).

4. Validation/Evaluation: “Did you achieve your goals?”

The mantra of good performance testing is: “incorrect results are worse than no results at all.” It is extremely important to validate
and re-validate all goals and the methodology at each step, checking to make sure that the testing is comprehensive, fair and
addresses the stated problems. Experience plays a big part in this step, since a seasoned performance tester will spot anomalies or
inaccuracies more readily than someone unfamiliar with the intricacies of good performance testing.

When validating testing that has been done, it is important to look for the following three things:

Did the testing address all of the stated problems?

Was the methodology executed as defi ned, and was it independent of any bias?

Were there any anomalies or unexpected results/behavior?

Any behavior or output that was unanticipated should be thoroughly researched and addressed before going on to draw conclusions
from the results.

•

•

•

 5. Results/Interpretation: “What does the output of the testing mean?”

This is one of the hardest parts of performance testing, and entire research papers have been written on the subject. When
evaluating the results of any testing, it should always be in the context of the outlined goals and methodology. For example, making
judgments on the number of concurrent connections during a test designed to demonstrate large fi le throughput is not useful, and
could lead to incorrect conclusions.

Like the previous steps, interpretation of the results should be an inclusive endeavor. Everyone involved in the testing should
have the opportunity to review and draw conclusions from the results. Any questionable results should be examined, and the
corresponding tests re-run, if necessary. Consensus should be obtained by all parties before making any decisions based on the
results of any performance testing.

 • New TCP connection attempt (SYN only)
 • Full TCP connection establishment (3WHS)
 • Full TCP connection establishment (3WHS) and HTTP request
 • Full TCP connection establishment (3WHS) and HTTP request & response (complete HTTP transaction)
 • Full TCP connection establishment (3WHS), HTTP request & response (complete HTTP transaction) and TCP close (FIN, ACK, FIN, ACK)
 • Full TCP connection establishment (3WHS), HTTP request & response (complete HTTP transaction) and TCP abort (RST)

F5 TESTING METHODOLOGY

 4

CREATING A ROBUST PERFORMANCE TESTING METHODOLOGY

Clarifi cation:
Many Application Delivery Controller vendors use different defi nitions when they refer to a “connection” as part of a “Connection
per second” metric. This difference in defi nitions leads to performance claims that are not comparable between vendors. Some
of the less robust defi nitions can make a device look fantastic on paper, but this is misleading and does nothing to assist customers
in making informed sizing decisions for typical environments. Additionally, a device that does extremely well in a SYN only
“connections” test may perform very poorly in a “connections” test that uses the recommended defi nition. The recommended
defi nition represents what will be typically seen in real-world deployment scenarios (i.e. real web browsers, servers, etc), and thus
should be used for all performance testing of Application Delivery Controllers.

The recommended defi nition for a “connection” is sometimes referred to as an HTTP/1.0 connection (or HTTP/1.0 request), because
original HTTP/1.0 implementations did not allow for more than 1 HTTP request per TCP connection. For many years HTTP/1.0
implementations have supported multiple HTTP requests per TCP connections, so this term is no longer accurate, but it’s still
commonly used.

It is important to note that this defi nition applies to the DUT. Some client applications (such as Internet Explorer) close connections
with a RST instead of a proper TCP close much of the time. The purpose of this defi nition is to ensure that vendors are not taking
connection handling “short cuts”, and to clearly defi ne a single grading scale and set of expectations for all vendors to follow.

Request (as in “Requests per second”)

Possible Defi nitions:

Recommended defi nition:
HTTP request & response.

Clarifi cation:
The terms “Connections per second” and “Requests per second” are often used interchangeably, but this should be avoided. It’s
prudent to clearly differentiate between the two because “connection” implies TCP (typically “L4” traffi c, or an HTTP session with
only 1 request), whereas “request” is more accurately defi ned as an entity operating at the application-layer (L7), and is often used
to specify that there are multiple HTTP requests in a single TCP connection. For further clarifi cation on the difference between L4
and L7, please see the L4 versus L7 section below.

The recommended defi nition for a “request” is sometimes also referred to as an HTTP/1.1 request. This term is commonly used
together with the term HTTP/1.0 connection (or request), as defi ned above in the Connection defi nition.

As hinted at above, it is desirable in many cases to open a single TCP connection and send multiple HTTP requests over it. The
number of HTTP requests per TCP connection must be explicitly defi ned in your test. A convenient shorthand notation to indicate
the number of HTTP requests per TCP connection is as follows: <#_req_per_client_conn>-<#_req_per_server_conn>, for example:
“1-10” would mean a maximum of 1 request per client connection, and a max of 10 requests per server connection. In the case
where the number of requests per connection is unlimited, “inf” (short for infi nite) is a good placeholder. Common examples of this
notation are: “1-1”, “1-10”, “1-inf”, “10-inf”, “inf-inf”.

Not having consensus on the defi nitions of “connection” and “request” can impact all aspects of your testing, from design to
interpretation of the results. It is imperative to have a common context for use in discussion and comparison, since at least one of
these two terms will be relevant in every test you run.

Open Connection

Possible Defi nitions:

 • New TCP connection attempt (SYN only)
 • HTTP request, independent of underlying TCP connection
 • HTTP request and response, independent of underlying TCP connection
 • Full TCP connection establishment (3WHS)
 • Full TCP connection establishment (3WHS) and HTTP request
 • Full TCP connection establishment (3WHS) and HTTP request & response (complete HTTP transaction)
 • Full TCP connection establishment (3WHS), HTTP request & response (complete HTTP transaction) and TCP close (FIN, ACK, FIN, ACK)
 • Full TCP connection establishment (3WHS), HTTP request & response (complete HTTP transaction) and TCP abort (RST)

 • Any TCP connection that is in the connection table of the DUT
 • Any TCP connection that has fi nished the three-way handshake (3WHS) and is in the connection table of the DUT
 • Any TCP connection that has fi nished the three-way handshake (3WHS), has processed at least one request & response, and is in the
 connection table of the DUT

F5 TESTING METHODOLOGY

 5

CREATING A ROBUST PERFORMANCE TESTING METHODOLOGY

Recommended defi nition:
Any TCP connection that has fi nished the three-way handshake (3WHS), has processed at least one request and response, and is in
the connection table of the device being tested.

Clarifi cation:
This term will typically be used when designing concurrent user tests, and can have a tremendous impact on the fi nal results
based on which defi nition is used. When used in concurrent user tests, the goal of having a certain number of open connections
is to simulate idle users. Alternate defi nitions may allow vendors to cheat this kind of test by using SYN cookies or other stateless
technologies that fail to simulate real idle users. In order to be meaningful in real world deployments, the recommended defi nition
should be used in all L4-L7 concurrent user tests.

Throughput

Possible Defi nitions:

Recommended defi nition:
L2 throughput (total bits per second “on the wire”).

Clarifi cation:
L2 throughput is the standard defi nition for essentially all networking devices and thus should be used to avoid confusion. The
recommended defi nition corresponds to the same defi nition as network interfaces (i.e. 100Mbps, 1Gbps), and as such is the most
useful for comparing tested performance versus maximum limits. The defi nition of this term has no impact on the fi nal results, only
how they are interpreted and compared.

It is important to note that some performance testing devices measure throughput at L7, and do not provide the option of
measuring this metric at L2 or L4. Correspondingly, some equipment measures at L2, without the option of measuring at L4 or L7.
Familiarity with this aspect of your load testing equipment is important when designing your tests.

Latency / Time-To-Last-Byte (TTLB)

Possible Defi nitions:

Recommended defi nition:
Number of milliseconds to complete a single request & response, starting from the fi rst SYN packet and ending on the last byte of
response data received.

 • L2 throughput (total bits per second “on the wire”)
 • L4 throughput (payload data plus HTTP, TCP and IP headers; does not include L2 Ethernet headers)
 • L7 throughput (payload data plus HTTP headers; does not include TCP, IP or L2 Ethernet headers)

 • Number of milliseconds for a single packet to be sent from server to client through the DUT
 • Number of milliseconds to complete a single request & response, starting from the fi rst SYN packet and ending on the last byte of
 response data received
 • Number of milliseconds to complete a single request & response, starting from the fi rst SYN packet and ending on the last FIN packet
 • Number of milliseconds to complete a single request & response, starting from the fi rst HTTP request packet and ending on the last
 byte of response data received
 • Number of milliseconds to complete a single request & response, starting from the fi rst HTTP request packet and ending on the last
 FIN packet
 • Number of milliseconds to complete a web page (with embedded objects) request, starting from the fi rst SYN packet and ending on
 the last byte of response data received
 • Number of milliseconds to complete a web page (with embedded objects) request, starting from the fi rst SYN packet and ending on
 the last FIN packet
 • Number of milliseconds to complete a web page (with embedded objects) request, starting from the HTTP request and ending on the
 last byte of response data received
 • Number of milliseconds to complete a web page (with embedded objects) request, starting from the HTTP request and ending on the
 last FIN packet

F5 TESTING METHODOLOGY

 6

CREATING A ROBUST PERFORMANCE TESTING METHODOLOGY

Clarifi cation:
These two terms are commonly used interchangeably, which can be problematic if they have different defi nitions. Like all the
previous terms, the recommended defi nition most closely matches the real world expectation, where the metric is judging the
performance as it would impact a client (i.e. from the time they try to open a connection until they have enough information to
display the data they have received). Similar to throughput, the defi nition of these terms have little impact on the fi nal results, only
the interpretation and comparison of them.

L4 versus L7
For several reasons, it’s important to distinguish between tests of “L4” and tests of “L7”. Many of the tests described below can be
run to achieve the same metric at either layer. The difference between L4 and L7 tests can be summarized as:

 L4: Tests basic load balancing capabilities, and is defi ned by the ability to make a traffi c management decision without
 inspecting/manipulating payload data.

 L7: Requires TCP multiplexing (many HTTP requests per TCP connection) and/or inspection/manipulation of payload data in
 order to make a traffi c management decision, such as evaluating an HTTP request.

The defi nition for “connection” and “request” in the Terminology section has additional details and further clarifi cations on the
similarities and differences of L4 and L7.

Basic Tests
Following is a list of basic tests, along with what the test measures. Each of these tests is designed to test a specifi c maximum
capability for the purposes of sizing or comparison. The majority of all performance tests are derivatives of these basic tests.

Each of the basic tests can be either L4 or L7 tests (as defi ned in the preceding L4 versus L7 section).

Connections/Requests per Second

Usually a series of tests with different response web page sizes, this test is used to measure the total number of TCP connections
(users) or HTTP requests (transactions) a device can process over a specifi ed time period (generally one second). This translates
directly into the maximum number of users/transactions the device can realistically support at any given moment.

As described previously, the primary difference between connections and requests is that connections are testing the TCP
capabilities, whereas requests evaluate the HTTP implementation.

These tests are sometimes run in parallel with a concurrent connections test.

Concurrent Connections

This test determines the maximum number of open connections (users) a device can support. This is accomplished by opening as
many connections as possible and leaving them idle (or “open”). The intent is to completely fi ll the connection table of the DUT
(typically limited by memory) in order to determine the maximum number of connections it can support, usually in combination with
the TTLB of a few requests at a given level of concurrency.

Variations of this test include opening and leaving idle a set number of connections, and then proceeding to run a connections/
second or requests/second test. This test simulates user inactivity or “think time”, which is often appropriate since in common real
world environments the majority of users will be idle or “thinking” at any given time.

Throughput

Throughput measures the total amount of data the device is capable of processing. This is generally accomplished by running a
connections/second or requests/second test using a large response size (512KB or 1MB, for example) that provides the best overhead
/ transmission ratio. As the response size is increased in connections/second and requests/second tests the throughput will generally
plateau at a point where the overhead in opening and closing connections no longer impacts the transmission of data. Thus,
it could be said that throughput is simply a connections/second or requests/second test with a fi le size large enough to test the
maximum data throughput, or “bits in, bits out”, capability of the device being tested.

It’s important to note that throughput is always measured using connections or requests as defi ned above. This is not a test of the
maximum L2 switch throughput; this is a test of the maximum throughput of L4-L7 features as measured at L2.

F5 TESTING METHODOLOGY

 7

CREATING A ROBUST PERFORMANCE TESTING METHODOLOGY

Advanced Tests

Using the basic tests as a basis, you can then move on to testing specifi c features or capabilities. The data gathered from your basic
tests will generally be used as a baseline, so that you can make direct and insightful determinations on the impact of enabling/
disabling specifi c confi guration options or features.

The advanced tests described here are essentially just like the basic tests described above, with the only difference being that a
specifi c option or set of options is changed on the DUT or on the load testing equipment. For example, an “SSL TPS” test is just a
connections/second test that has SSL enabled. Most tests are labeled based on what feature/function is being tested, as a product
of the way people think about these features and the implementation used by industry-standard load testing equipment (such as
Spirent and Ixia). Thus, two otherwise identical tests with only one variation may have completely different names (i.e. “throughput”
can become “SSL bulk crypto” when testing with SSL termination enabled, even though it’s typically just called “SSL Throughput”).
It’s helpful to think of basic tests as baselines, and advanced tests as variations used to test specifi c features or functions.

Generally speaking, all advanced tests will be L7.

SSL

Measures the benefi t of SSL termination at the DUT, or “SSL offl oad”. SSL tests can be based on the requests/second or throughput
basic tests. In addition to enabling SSL termination, it’s common to have some tests that vary SSL-specifi c parameters, such as the
number of allowed SSL Session ID reuses. Common parameters for SSL Session ID reuse are:

 • No SSL Session ID reuse.
 • 9 SSL Session ID reuses (total of 10 Session ID uses).

SSL tests that focus on connections per second are typically called “SSL TPS” tests (SSL transactions per second), and SSL tests that
focus on throughput are typically called “SSL throughput”, “bulk SSL throughput”, or “bulk crypto throughput”.

Caching

Measures the benefi t of caching response content on the DUT, thereby offl oading connections from the back-end servers and
responding to client requests more rapidly. In addition to enabling caching, it’s common to vary the percentage of cacheable
content being returned by the back-end servers in order to derive more information regarding a vendor’s caching implementation.
Common parameters for percentage of cacheable content are:

 • 0% Cacheable (Completely dynamic content)
 • 50% Cacheable
 • 100% Cacheable (Completely static content)

Each device being tested may have its own caching confi guration options, including what content to cache and for how long, which
should be left at default settings unless tuned by the vendor. The tuning and the justifi cation for the tuning should be documented
in the test methodology.

This test also has a unique metric, “ratio of hits”, which measures the number of client requests that are served out of the device’s
cache rather than from a back-end server over the total number of requests (cached requests / total requests).

Compression

Measures the benefi t of offl oading HTTP compression to the DUT and/or the benefi t of reducing the amount of data that must be
transmitted. In addition to simply enabling compression, it’s common to vary the compressibility of the content being returned by
the back-end servers in order to derive more information regarding a vendor’s compression implementation. Common parameters
for percentage of compressible content are:

 • 0-1% Compressible (Truly random or encrypted data. 0-1% ratio can be achieved against all compression algorithms)
 • 50% Compressible
 • 99-100% Compressible (Duplicate data, such as a fi le fi lled with a repeating string or single character)

Each device being tested may have its own compression confi guration options, such as the compression algorithm or algorithm
optimization settings, which should be left at default settings unless tuned by the vendor (what and why must be documented in
the methodology).

This test has a unique metric, “ratio of compression”, which measures the total L7 data transferred to the client (does not include L2
Ethernet, IP or TCP headers) over the total L7 data sent from the servers (compressed data / total data).

F5 TESTING METHODOLOGY

 8

CREATING A ROBUST PERFORMANCE TESTING METHODOLOGY

Mixed

Mixed tests are the combination of a number of different types of tests into one traffi c pattern. The idea is to simulate a wide range
of end user activity in order to test multiple areas of a DUT simultaneously. This provides a better example of how the DUT might
fare in the expected production environment. Mixed tests are often the best at fi nding limitations and/or bugs in the DUT’s.

Vendor-Specifi c

This category of tests is for specifi cally testing any unique features of a particular vendor which are expected to be used in the
eventual production deployment. Similar to the other feature-based advanced tests (SSL, Caching, Compression, etc.), the goal is to
isolate the effect of enabling/disabling the feature in question.

Deployment-Specifi c

All the tests described above (both basic and advanced) are baseline tests used to determine the maximum performance capabilities
of certain aspects of the devices being evaluated. Through a comprehensive run of the previous tests, you can obtain a performance
profi le of how a device will perform under certain conditions.

The goal of running tests in this category is to cover any nuances of the deployment environment which are not addressed with any
of the previous tests. Typically, this is performance evaluation of advanced L7 intelligence.

Keep in mind that while the majority of the previous tests (both basic and advanced) are focused on establishing the maximum
performance of a feature or capability, tests in this category will generally be focused on the maximum performance of a
deployment scenario. Thus, tests in this category can be mistaken for mixed tests. The difference is that in mixed tests the goal
is defi ned as “maximum <metric> with <selected traffi c mix>”, whereas deployment-specifi c tests are defi ned as “meet <specifi c
conditions> while accomplishing <specifi c tasks>” in deployment-specifi c tests. It’s important to make this distinction while
designing tests, since the deployment-specifi c defi nition should defi ne the deployment scenario (instead of being a generic test) and
will allow vendors a greater deal of latitude in tuning their devices, since there are a number of conditions that need to be met rather
than a single metric. The most fl exible Application Delivery Controllers will really have an opportunity to shine in these tests.

It’s extremely important to have the “specifi c conditions” and “specifi c tasks” clearly defi ned, and to evaluate all vendors using
identical tests.

Spotting Biased or Broken Testing

Here is a list of things to look out for in order to spot biased or broken testing.

Data “piggy backed” on the three-way handshake (SYN, SYN/ACK, PSH/ACK instead of SYN, SYN/ACK, ACK, PSH/ACK).
Real operating system TCP stacks do not use “piggy backing”.

Connections closing with RST instead of a proper four-way TCP close (FIN, ACK, FIN, ACK). Either may be acceptable, but
which is used should be monitored for consistency between the devices being tested.

Lack of functional equivalence. There may be multiple ways of accomplishing the desired result on any given vendor’s
devices. Always use the simplest function on any given device, and rely on vendor recommendations and guidance.

Mandatory inclusion of unique features in non-vendor-specifi c tests. If there is a desire to test a feature of one vendor’s
devices that is not shared by the rest, this should be addressed with a completely separate and independent test. Requiring
the use of unique features in shared tests eliminates any functional equivalence, negating the results and creating bias. This,
of course, does not preclude vendors from using unique features to better meet the test requirements if they choose to do
so.

Tests that have been “dumbed down” to the lowest common denominator (for example, a test that defi nes the solution
instead of the problem; “using L7 rules” instead of “based on <special piece of data>”). Each vendor should be able to
choose how best to meet the test criteria, which should be designed with the actual use case in mind (as covered in the
Goals/Scoping section). Vendors with more capabilities should not be restricted to only using certain features because of
limitations in other vendor’s devices – the test case should only defi ne the problem to be solved, not how to solve it.

Requirements that have been defi ned based on a particular vendor’s product, or a vendor’s devices being used to build the
test confi gurations. The goals and methodology of the testing should be designed independent of any particular vendor
solution (as covered in the Goals/Scoping section), in order to avoid stifl ing the creative problem solving capabilities of
feature-rich devices.

•

•

•

•

•

•

F5 TESTING METHODOLOGY

 9

CREATING A ROBUST PERFORMANCE TESTING METHODOLOGY

Beware of case insensitivity. Some vendors do not support case insensitive inspection, in which case all testing should be
case sensitive. If case insensitivity is required, devices that do not support this will need to check for every possible case (i.e.
FOO, FOo, FoO, Foo, fOO, fOo, foO, foo) in order to achieve functional parity.

Unclear or undefi ned grading scale or selective grading. The expected output for each test should be clearly defi ned. As
part of the goals and methodology, each vendor should know exactly what is being measured in each test. All devices
should be graded on the same criteria for every test.

Metrics that are recorded from the DUT. All measurements should be taken on the test equipment (load generation tools,
switches, etc), and not from the DUT. As an unbiased tester, you must assume all DUT’s report inaccurate performance
metrics (CPU usage, connections per second, compression ratio, etc).

All vendors should have equal opportunity to tune their devices for each test scenario, just as they would for a real
deployment.

•

•

•

•

I Live In The Real World and Not A Lab: What Do I Do?

All the information up until this point is meant to describe the ideal performance testing case, where there is enough time allotted
and all vendors are allowed equal opportunity to provide feedback and tune their devices. However, it’s well known that this rarely
happens. In most cases, there is not enough time allocated, or the engineers conducting the tests do not have the resources or
expertise necessary to do proper testing, or the test engineers are unwilling to accept vendor input on the testing, or some of the
above, or all of the above.

What should be done in these circumstances? First and foremost, it’s important to use what you have already learned about
properly executed performance testing to persuade any dissenters and hopefully change course and do what’s necessary to conduct
proper testing. In the absence of a change of heart on the part of the dissenters, the following is a list of suggestions for dealing
with testing being done on a short time scale under sub-optimal conditions.

Know the products
Set aside a day or two and run tests “back to back” using only the load testing equipment (no switches or DUTs). Change settings
and see the effect. Then add in your L2 switch and run some throughput tests. Bring the vendor of your load testing equipment
onsite to help out. If you know you’ll be running similar tests in the future but can’t dedicate the test infrastructure for this purpose,
make sure you have copies of the confi gurations once you’re satisfi ed with the confi guration. Using known “good” confi gurations
for future tests can help reduce the time required to reconstruct the test environment.

At the same time you’re familiarizing yourself with the test equipment and making sure it works as needed, ask the vendors to
confi gure their own devices for the tests you want to run (have them bring the devices onsite pre-confi gured). Make sure you’ll have
vendor representatives’ onsite during setup and execution of your testing.

Watch out for shortcuts
Some common tactics employed to compensate for a lack of time or forethought include, but are not limited to:

Using basic tests with no relevance to the expected use once the product is deployed. Remember: if the tests that are run
do not simulate real clients and servers, and do not test expected uses of the product: they are not worth running! It’s
better to run fewer tests and get good results.

Designing and implementing the fi rst round of tests using one vendor’s equipment.

Asking the rest of the vendors to setup their devices for testing in a short time frame, after the fi rst vendor has had the
benefi t of a longer time frame to refi ne their confi gurations.

Employing L2-L3 performance equipment and/or tests, instead of proper L4-L7 test gear and testing methodology.
Remember: if the tests that are run do not simulate real clients and servers, and do not test expected uses of the product:
they are not worth running! It’s better to run fewer tests and get results that are meaningful.

Trying to implement the tests without the proper training and experience, and potentially using rented performance testing
gear that they are not familiar with.

Remember that if the tests that are run do not simulate real clients and servers, and do not test expected uses of the product, they
are not worth running. It is better to run fewer tests and get meaningful results.

•

•

•

•

•

F5 TESTING METHODOLOGY

 10

CREATING A ROBUST PERFORMANCE TESTING METHODOLOGY

Leverage known information
Have previous performance testing reports (like the Broadband Report – http://www.f5.com/products/pdfs/BBTV9_Performance_
Report.pdf) and vendor marketing materials on-hand and know what their contents are. Having information readily available to
dispute infl ated or suspect results can save time by identifying when re-testing may be appropriate before moving on to other tests.

Example Scenario

In this section, we outline an example customer scenario and matching methodology using the principles described in the rest of this
document.

Important:
This is a completely fi ctitious example, meant to demonstrate how to translate customer requirements into a methodology based
on the process outlined in the rest of this document. The customer requirements are completely contrived, and are not based on
any real use case. The example methodology is only an example, and is not a recommended test plan. Any performance testing
methodology you develop should be based on the stated goals/objectives of you or your customer; do not simply copy and paste
this scenario.

Customer Problem
The customer has a farm of 20 web servers (5 image/Flash servers and 15 page servers) delivering dynamic content from 5 database
servers for a partner portal that averages 50,000 simultaneously active users and 4 Gbps of L2 throughput. The average total
page size is about 165KB, with roughly 25 in-line images and a Shockwave Flash banner. They would like to offl oad server SSL and
compression, as well as provide caching for all static content. There are three vendors being evaluated, and the customer would like
to do performance testing to compare the offl oad capabilities, as well as test some feature sizing comparisons.

Customer Requirements
The customer will pick the vendor with the best performance/price ratio that can sustain a concurrent user and throughput load
30% greater than their current averages. All users will be coming from some type of high-speed Internet connection, so the
customer does not care about WAN optimization or emulation, but would like to maintain a reasonable response time (less than 5
seconds per complete page load). They must log all client IP addresses, but don’t care if the IP is preserved or is delivered in an HTTP
header. Anything that can be done to offl oad server-side processing is welcome, as long as it doesn’t require any changes to the
clients. All vendors have demonstrated database persistence for connections from the web servers, so they only desire to test the
client experience in regards to the web servers (this is their primary bottleneck). Since users must be authenticated and the content
is completely dynamic based on who they are, users must visit the same web server for the duration of each session; the customer
would like to use their existing authentication token (an HTTP cookie) for this.

Example Methodology

Global Defi nitions
For this methodology, these terms will have the following defi nitions:

Test Page
The predetermined content which will be used to simulate the average page on the deployment site. The Test Page consists of:

1x 20KB page with included CSS and JavaScript

10x 1KB images

5x 2KB images

5x 5KB images

5x 10KB images

1x 50KB Shockwave Flash

Servers
There will be one group of 5 image/Flash servers and another group of 15 page servers in every test using the Test Page. In all other
tests, only the 5 image/Flash servers will be used (no page servers).

Full HTTP Headers
Includes HTTP headers that simulate Internet Explorer 7.0 in client requests, and simulate Apache 2.x in server responses.

•

•

•

•

•

•

http://www.f5.com/products/pdfs/BBTV9_Performance_Report.pdf
http://www.f5.com/products/pdfs/BBTV9_Performance_Report.pdf

F5 TESTING METHODOLOGY

 11

CREATING A ROBUST PERFORMANCE TESTING METHODOLOGY

Connection
An HTTP/1.1 request with only a single request per TCP connection from the client’s perspective. HTTP requests and responses must
include full HTTP headers and use standard connection termination (four-way TCP close). This must be a “real world” example, so
the DUT’s are not permitted to use any non-standard TCP or HTTP optimization techniques, such as including data in the three-way
handshake or closing connections with a RST.

Request
An HTTP/1.1 request with full HTTP headers.

Open Connection
A connection that has fi nished the three-way handshake, completed one request and response, and is in the connection table of the
DUT.

Time-To-Last-Byte (TTLB)
Number of milliseconds to fulfi ll all requests required to download the complete Test Page and all embedded objects, starting from
the fi rst SYN packet and ending on the last byte of response data.

Failure
Once a single client request does not succeed, or the test parameters are violated, the device will be considered “failed” for the rest
of the test.

Test 1: Throughput

Description
Maximum Gbps of traffi c the device can sustain with at least 65,000 concurrent connections requesting a 1,000,000 byte test fi le.

Expectation
Ability to sustain greater than 4 Gbps of load balanced throughput, measured at L2. Vendors will be ranked based on L2
throughput, which will be measured from the 2nd to the 4th minute of the fi nal steady-state.

Ramp Up/Down
Ramp to 65,000 users at a rate of 5,000 users/10 seconds, and then maintain steady-state of 65,000 users for 5 minutes.

Confi guration Options

SSL: off
Caching: off
Compression: off

Iterations
 This test has only one iteration.

Test 2: Concurrent Connections

Description
Maximum number of concurrent open connections the device can successfully sustain. The initial request will be for a 128B fi le.

Expectation
Ability to support greater than 100,000 concurrent open connections. Vendors will be ranked based on number of concurrent open
connections, which will be measured for the last 30-90 seconds before failure.

Ramp Up/Down
Ramp to failure at a rate of 5,000 users/10 seconds with 1 minute steady-states every 20,000 users.

Confi guration Options

 SSL: off
 Caching: off
 Compression: off

Iterations
 This test has only one iteration.

F5 TESTING METHODOLOGY

 12

CREATING A ROBUST PERFORMANCE TESTING METHODOLOGY

Test 3: Requests per Second

Description
Maximum number of requests/second the device can successfully sustain with users requesting the Test Page and its embedded
objects.

Expectation
Ability to sustain greater than 1,000 requests/second with a TTLB of no more than 5 seconds. Vendors will be ranked based on
number of requests/second, which will be measured for the last 30-90 seconds before failure.

Ramp Up/Down
Ramp to failure at a rate of 5,000 users/10 seconds with 1 minute steady-states every 20,000 users.

Confi guration Options

 SSL: off
 Caching: off
 Compression: off

Iterations:

 This test has only one iteration.

Test 4: SSL

Description
Maximum number of SSL terminated requests/second the device can successfully sustain with users requesting the Test Page and its
embedded objects.

Expectation
Ability to sustain greater than 1,000 requests/second with a TTLB of no more than 5 seconds. Vendors will be ranked based on
number of requests/second, which will be measured for the last 30-90 seconds before failure.

Ramp Up/Down
Ramp to failure at a rate of 5,000 users/10 seconds with 1 minute steady-states every 20,000 users.

Confi guration Options

 SSL: on
 Caching: off
 Compression: off

Iterations
 One run with no SSL Session ID reuse.
 One run with 9 SSL Session ID reuses (total of 10 uses).

Test 5: Caching

Description
Maximum number of caching enabled requests/second the device can successfully sustain with users requesting the Test Page and
its embedded objects.

Expectation
Ability to sustain greater than 3/5 ratio of hits and 1,000 requests/second with a TTLB of no more than 5 seconds. Vendors will be
ranked based on number of requests/second and caching ratio, which will be measured for the last 30-90 seconds before failure.

Ramp Up/Down
Ramp to failure at a rate of 5,000 users/10 seconds with 1 minute steady-states every 20,000 users.

Confi guration Options

 SSL: off
 Caching: on
 Compression: off

F5 TESTING METHODOLOGY

 13

CREATING A ROBUST PERFORMANCE TESTING METHODOLOGY

Iterations
 This test has only one iteration.

Test 6: Compression

Description
Maximum number of compression enabled requests/second the device can successfully sustain with users requesting the Test Page
and its embedded objects.

Expectation
Ability to sustain greater than 50% compression of text content (must not attempt to compress images or Flash) and 1,000 requests/
second with a TTLB of no more than 5 seconds. Vendors will be ranked based on number of requests/second and compression
percentage, which will be measured for the last 30-90 seconds before failure.

Ramp Up/Down
Ramp to failure at a rate of 5,000 users/10 seconds with 1 minute steady-states every 20,000 users.

Confi guration Options

 SSL: off
 Caching: off
 Compression: on

Iterations
 This test has only one iteration.

Test 7: Total System Performance

Description
Maximum number of requests/second the device can successfully sustain with users requesting the Test Page and its embedded
objects. Clients must be directed to the same server for the duration of each session based on the HTTP cookie they receive from
the application, and their IP address should either be preserved or inserted as an HTTP header.

Expectation
Ability to sustain greater than 1,000 requests/second with a TTLB of no more than 5 seconds. Vendors will be ranked based on
requests/second, which will be measured from the 2nd to the 4th minute of the fi nal steady-state.

Ramp Up/Down
Ramp to 25,000 concurrent open connections at a rate of 5,000 users/10 seconds, then ramp requests to 40,000 at a rate of 5,000
users/10 seconds with a 1 minute steady-state at 20,000 users and a 5 minute steady-state at 40,000 users.

Confi guration Options

 SSL: on (no SSL Session ID reuse)
 Caching: on
 Compression: on

Iterations
 This test will be run 3 times back-to-back (no reboots), and the results will be averaged.

