
Parallelizing a Computationally Intensive Financial R Application with Zircon
Technology

Zircon Computing LLC†, Mascon Global Limited‡, and Garrett Asset Management LLC§

†30, Galesi Drive, Suite 202B, Wayne, NJ 07470, USA
‡1841, Broadway, Suite 700, New York, NY 10023, USA

§800, Third Avenue, New York, NY 10022, USA

Abstract

Statisticians, analysts, scientists, and engineers require
massive processing power to conduct data analysis, predic-
tive modeling, visualization, and other complex tasks. This
paper describes how we substantially improved the perfor-
mance of a representative complex computational finance
application by integrating the Zircon adaptive ultra high-
performance computing software platform and tools with
the R programming language and environment. This inte-
grated solution uses distribution and parallelization to re-
duce the total computation time of the R-based application
from 3,093 minutes to 40 minutes on a commodity multi-
processing platform.

1 Introduction

Companies in competitive domains, such as financial
services, digital media, text mining, and enterprise content
management, create large data repositories containing large
amounts of data collected from their daily operations. An-
alyzing this archived data can yield knowledge that drives
future business and provides significant market advantages
over competitors. Although companies could use special-
ized super computers, such as Crays, the custom develop-
ment time and hardware costs are prohibitive.

Another approach is to use conventional high-
performance computing (HPC) software platforms,
such as MPI [9], PVM [6, 8], OpenMP [10], or Globus [5],
atop multi-core/multi-node platforms. Although this
approach is more flexible than using specialized super
computers it has following drawbacks:

• Doesn’t leverage or scale to the entire network.Ap-
plications based on conventional HPC software plat-
forms seldom leverage the capabilities of the latest

multi-core processors, the LAN, the enterprise WAN,
or any external “cloud” networks since conventional
HPC solutions cannot adapt dynamically to changing
workloads and resource availability.

• Custom development and integration.Conventional
HPC software platforms require extensive manual de-
velopment and integration of custom server and appli-
cation programming before they can work (and many
common and legacy apps cannot be modified unless
they are redeveloped).

• Tied to modified apps. Once applications are cus-
tomized, they are locked in to a particular HPC plat-
form and deployment configuration, and cannot lever-
age updates without redoing the intense customization.

• Complex setup with no support for automated plug
and play. Conventional HPC software platforms re-
quire complex setup and customization to adjust the
load manually on all processors in the network since
they don’t have automatic adaptive load balancing.

This paper describes how we overcame the limitations
with conventional HPC platforms to substantially improve
the performance of a representative complex computational
finance application—the Garrett Asset Management Back-
testing System—by integrating R [11] and Zircon soft-
ware [1]. R is a programming language and software en-
vironment for statistical computing and graphics that pro-
vides rich platform support for data modeling, analysis, and
visualization. Zircon is an adaptive ultra high-performance
computing software platform and tools that requires no
server development; minimal application integration; is
easy and automatic to setup; and scales quickly from a few
laptops to tens of thousands of multi-core servers ranging
from multi-core, LANs, WANs, and clouds.

The Garrett Asset Management (GAM) Backtesting Sys-
tem financial application uses historical and hypothetical



simulations to assess mathematical models used to drive
high-frequency electronic trading and help inform com-
plex decision-making. Like many financial applications,
the GAM Backtesting System executes a large number of
logically independent and computationally intensive calcu-
lations to simulate the behavior of various algorithms on
historical data. For example, the GAM backtesting system
executes backtesting financial models over a sequence of
historical time periods - there could be lot of models, and
the time periods may also be large. For each combination
of a model and a time period, the GAM backtesting sys-
tem performs the same computationally intensive calcula-
tion and collects results until computations are performed
for all the models over all the time periods.

R was a natural choice to meet GAM’s statistical analy-
sis requirements due to its convenient abstractions that al-
low statisticians and engineers to run complex data analysis
with a few commands. R’s interpretive structure, however,
was a limiting factor for delivering complex and mission-
critical analysis in a timely fashion. By integrating R with
Zircon software, therefore, users can focus on writing their
application logic related to data modeling, analysis, and vi-
sualization in the intuitive R language and leave the com-
plexities of accelerating computation-intensive R applica-
tions to Zircon software’ adaptive ultra high-performance
computing solution.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the limitations of applying traditional paral-
lel computing solutions for speeding up compute-intensive
R applications such as the GAM backtesting system; Sec-
tion 3 describes the structure and functionality of the Zir-
con software; Section 4 describes how the Zircon software
was used to parallelize and speed up the complex compute-
intensive calculations of the GAM backtesting system; Sec-
tion 5 analyzes the empirical results that demonstrate the
performance improvements after parallelizing the sequen-
tial GAM backtesting system using the Zircon software; and
Section 6 presents concluding remarks and lessons learned.

2 Strategies and Challenges for Accelerating
Compute-Intensive R Applications

R is a statistical software package that provides analysts
with a comprehensive environment for statistical computa-
tion, data manipulation, data analysis, and graphical data
visualization. Apart from providing a full-fledged statistical
language with first-class support for performing operations
on complex data structures such as arrays and matrices, R
also provides many libraries and packages for performing
complex statistical operations and assisting analysts in var-
ied domains including finance, econometrics, clinical trials,
machine and statistical learning. natural language process-
ing, and genetics [7].

With the proliferation of R in various domains requiring
complex data analysis tools, several strategies have emerged
for accelerating R applications. For example, custom ana-
lytic routines and libraries can be written in compiled lan-
guages, such as C and C++, and run within the R environ-
ment to speed up analysis and enhance reuse, thereby sav-
ing significant development time and effort. To facilitate
this integration, theRcpp[4] andRInside[3] packages can
be used to seamlessly integrate C/C++ code in R packages.

Another strategy for accelerating compute-intensive R
applications is to leverage current generation hardware ad-
vances and perform complex calculations in parallel across
multiple processors and deliver results quickly and scal-
ably. For example, R has been integrated withRmpi [16]
and snow [15] to distribute calculations over many com-
puters. Existing strategies for accelerating complex R ap-
plications incur the several challenges for mission-critical
applications, including:

• Existing parallel computing solutions [12] for R are
based on conventional grid computing middleware.
Traditional grid middleware is cumbersome to pro-
gram, however, for the reasons described in Section 1.
As a result, significant amounts of ramp-up time and
effort must be spent on tutorials, webinars, and other
study materials to educate developers on these hard-to-
program technologies.

• Integration technologies, such asRcpp, are effective
for speeding up computations within a single proces-
sor by replacing interpreted R code with efficient com-
piled code. These integration technologies, however,
cannot easily perform complex calculations and anal-
ysis in parallel across multiple computers in a cloud
environment.

What is needed, therefore, is a solution that can lever-
age both hardware and software innovations in distributed
and parallel computing, while simultaneously reducing the
learning curve and effort needed to incorporate these inno-
vations into mission-critical applications. In particular, an
ideal solution should allow data analysts to (1) easily dis-
tribute complex calculations/analysis across multiple pro-
cessors and execute them in parallel, (2) invoke analysis
routines in compiled and/or interpreted languages seam-
lessly on any OS/hardware platform, and (3) improve run-
time performance via advanced hardware technologies (e.g.,
using massive processing capabilities on a cloud) and soft-
ware technologies (e.g., by switching between R and com-
piled code as needed).



3 Solution Approach: Integrating R with the
Zircon Software

The Zircon Software Product Suite [1] from Zircon
Computing provides an adaptive ultra high-performance
computing middleware platform that substantially accel-
erates the performance of R applications and addresses
the challenges with existing strategies described in Sec-
tion 2. Zircon software automatically deploys a distributed
computing infrastructure across (potentially) heterogeneous
hardware platforms and operating systems, maps compute-
intensive applications to a pool of processors, manages their
execution, and dynamically equalizes the workload in real
time to fit available resources. Application developers can
thus exploit the processing power available to them, includ-
ing newer technologies, such as multi-core processors and
cloud computing systems, as well as traditional desktops
and servers.

3.1 Features and Benefits of Zircon Software

Below we describe the key features and benefits of Zir-
con software.

3.1.1 Extreme Performance

Zircon provides an adaptive ultra high-performance com-
puting solution via the following features:

• Real-time load equalization.Zircon utilizes and dis-
tributes the workload in real-time across all available
computing and networking resources, including multi-
core desktop, LAN, WAN or any accessible cloud net-
work. This load equalization ensures every processor
in the grid is optimized to maximize computing perfor-
mance.

• Transparent scalability. Processors and cores can be
added or removed (and allocated for other tasks) with-
out disrupting ongoing operations since Zircon soft-
ware automatically recognizes the state of the proces-
sors and allocates workload without changing applica-
tion software.

• Distributed data caching. Zircon software can cache
large data structures on servers by sending the data
just once, then sending a reference to the cached data
on each server during each request. This distributed
data caching accelerates distributed applications where
communications overhead is significant compared to
the actual computation time.

• Ultra fast data transfer. Unlike conventional middle-
ware, that bottlenecks application data between clients
and servers by using text-based protocols (e.g., HTML,

XML, and SOAP), Zircon software automatically gen-
erates optimized binary protocols that transfers results
much faster.

• No virtualization overhead. Zircon software runs at
native operating system speeds on heterogeneous oper-
ating systems, hardware platforms, programming lan-
guages, and network environments with no virtualiza-
tion overhead. These features enable the fastest com-
puting performance possible, increasing computations
up to 98faster for select applications, and from 2 to
9 times faster than conventional HPC software plat-
forms.

3.1.2 Minimal Development Effort

Zircon minimizes the time to develop HPC applications via
the following features:

• No server-side development.Unlike competing HPC
platforms, Zircon can execute existing application
functions and algorithms in parallel without requir-
ing any server-side development. This capability al-
lows quicker development and can utilize existing
servers including those within the cloud. Conven-
tional HPC software platforms cannot be used in cloud
computing–since external data centers would not want
you tampering with their servers.

• Minimal application development. Zircon software
is designed as a component-based framework that con-
tains many “knobs” can be extended and tuned trans-
parently to easily and quickly support new user re-
quirements and application feature enhancements.

• Maintains application security. Zircon software does
not need to know the application data and sensitive
business logic to operate, which means it is always se-
cure and confidential.

3.1.3 Rapid Configuration and Deployment

Zircon minimizes the time to configure and deploy HPC ap-
plications via the following features:

• Automatic parallel configuration. Zircon includes
asynchronous adapters that quickly configure existing
non-parallel application code to run in parallel execu-
tion that run much faster by leveraging the process-
ing power of the entire grid. These adapters can also
configure applications to run in collocated and/or dis-
tributed parallel deployments that maximize the use of
available computing resources.

• Platform independence.Any distributed and/or col-
located computation can be deployed on any popular



operating system or platform with complete and au-
tomatic interoperability. This platform independence
means a Windows application can leverage the proces-
sors on Linux, Solaris, AIX, Mac, and other operating
systems without having to re-write or port the applica-
tions themselves since Zircon handles the conversions
automatically.

3.1.4 Intuitive Use and Administration

The following features make Zircon intuitive to use and ad-
minister:

• Automatic load equalization. Unlike conventional
HPC software platforms, Zircon software automati-
cally equalizes the load between all of the available
(heterogeneous and/or homogeneous) processors in
the grid adaptively, which eliminates the tedious trial
and error needed to maximize performance.

• Automatic service discovery. Zircon software dy-
namically discovers and optimizes all processors avail-
able at runtime. When new machines are added or re-
moved from a deployment, Zircon software will auto-
matically reconfigure accordingly, which ensures max-
imum performance at all times with little or no admin-
istrative input.

• Automatic real-time monitoring and auditing. Zir-
con software provides powerful tools for automatically
monitoring and transparently auditing huge volumes of
application and system events. These tools minimize
the total cost of ownership by enabling real-time deci-
sion making that is more accurate and relevant than is
possible with manual monitoring and current auditing
approaches.

• Persistent and recoverable.Zircon software uses a
self-adaptive, fault-tolerant architecture that ensures
that applications will automatically recover and trans-
parently re-execute requests on different servers if ex-
isting servers disconnect or fail.

3.2 The Zircon Software Architecture

Applications built using Zircon software are known as
zEnabledapplications. Zircon software supports three
computing and communication models required by many
mission-critical zEnabled applications that need ultra high
performance, as shown in Figure 1 and described below:

• Application function parallelism , such as the capa-
bilities provided by computation grids to run applica-
tion operations in a cluster of servers as if they are pro-
grammed for a single computer. ThezFunctionfunc-
tion parallelism API and supporting tools hide many

Figure 1:Zircon Software Architecture

low-level network programming concerns and unex-
pected complexities, simplifying fine-grained applica-
tion parallelization.

• Application executable parallelism, such as the capa-
bilities provided by data centers and clouds to launch
applications on demand. ThezExecapplication execu-
tion parallelism service runs any executables in a clus-
ter of servers as a set of parallel jobs, thereby simpli-
fying coarse-grained application parallelization.

• Service delivery platforms, such as the capabilities
provided by distributed computing environments that
support cooperating business tasks via distributed in-
frastructure patterns [2], such asMessaging, Broker,
and Publisher/Subscriber. The zNetAPI provides a
C++ interface to the zNet service delivery platform that
handles service discovery, reliable multicast commu-
nication, request load balancing, and request dispatch-
ing.

Requests from applications that use these three models can
run on processors and cores in a collocated and/or dis-
tributed manner, with the choice of collocation or distribu-
tion largely transparent to application clients and servers.
Zircon software runs on all popular general-purpose and
real-time operating systems since it is implemented atop
the open-source ADAPTIVE Communication Environment
(ACE) [13, 14], which is portable C++ host infrastruc-
ture middleware that shields Zircon software from operating
system dependencies.



The remainder of paper describes how we developed a
distributed and parallelized zEnabled version of the GAM
Backtesting System using the Zircon zNet service delivery
platform described above.

4 A zEnabled-R Solution for the GAM Back-
testing System

This section describes how the Zircon software was used
to parallelize and speed up the complex compute-intensive
calculations of the GAM backtesting system. First, we de-
scribe the structure of a typical zEnabled R application.
Next, we describe how we used this structure to implement
the parallelized version of the GAM backtesting system.

4.1 Structure of a Typical zEnabled R Application

zEnabled R applications follow the general Zircon soft-
ware paradigm of having a client application invoke multi-
ple asynchronous requests on remote compute servers (Fig-
ure 2, Steps 1 and 2) through Zircon’s dynamic real-time
load equalizer (which resides within the zNet Client Mid-
dleware as shown in Figure 2). Parallelization is achieved

Figure 2:The Structure of a Typical zEnabled R Appli-
cation

by executing these requests in parallel on multiple generic
Zircon compute servers, known aszEngines(Figure 2, Step
3). As soon as each computation completes its results are
returned to the client application (Figure 2, Step 6). The re-
quest and results are performed in one function call that is
synchronous from the perspective of R application develop-
ers, i.e., remote computation results are available for useby
a client after all results are returned.

The zEnabled client application consists of R code that
loads Zircon software as a plug-in library. Likewise, the

server application dynamically loads the R language li-
brary and as user-defined R functions into a zEngine pro-
cess that provides a lightweight container for zEnabled soft-
ware (Figure 2, Steps 4 and 5). To execute R code, the
zEngine loads both the R language interpreter library and
application-specific R definitions for functions that will pro-
cess requests received from clients in parallel with other re-
quests.

Zircon software on the client and server(s) uses a com-
pact, application-specific binary protocol to transmit re-
quests and results. This protocol is implemented via se-
rialization/deserialization operators for user-defined C/C++
types. The interface between the user’s R code and Zircon
software therefore requires defining mappings between na-
tive R data types and serializable C++ objects for each R
function with a distinct signature. These are provided by a
user library that can be written using Zircon APIs and tools.

To simplify the development of user libraries for R in-
tegration, Zircon software provides thezNet-Rcomponent,
which wraps an instance of the R interpreter implemented
as aRInsideobject. RInside and its associatedRcpppack-
age provide a facade for accessing and manipulating native
R types from within a C++ application. Developers of user
libraries can use these utilities to quickly map types used
by R to/from serializable C++ objects, such as STL vectors
and strings. The Rcpp package, in particular, allows users to
serialize diverse R types, such as values, vectors, matrices,
and data frames.

4.2 Implementing a Parallelized Garrett Asset
Management (GAM) Backtesting System

Figure 3 compares and contrasts the original sequen-
tial GAM Backtesting System with the corresponding zEn-
abled parallelized version. Figure 3a shows how the origi-
nal application contains two nested loops that iterate over
a number of financial models (theMODELS list) and a
large set of points in a multi-dimensional parameter space
(StratPars). The bulk of the calculation is performed by
theGenericgetNAVs () function that simulates a particu-
lar model with a set of parameters drawn from this space.
The parameter space is large and may have any number of
dimensions, with typical runs totaling nearly 100,000 dis-
tinct invocations. Most of these invocations are homoge-
neous, taking several seconds to complete on commodity
hardware.

The parallel zEnabled implementation shown in Fig-
ure 3b is structurally similar to the sequential code. Just as
the sequential implementation can be defined by the post-
condition that theallres matrix has been completely pop-
ulated with results at the end of the loops, the parallel im-
plementation exits the block of code with the same state.
Similarly, both pieces of code iterate over a number of ob-



(a) Pseudo Code of the Sequential Implementation (b) Pseudo Code after Parallelization with Zircon Software

Figure 3:Different Implementations of the GAM Backtesting System

jects in theMODELS list and execute simulations with them.
In contrast, the nested loop in Figure 3a that iterates over the
points in a parameter space is replaced in its entirety in Fig-
ure 3b with a single call to thecall_get_navs() function,
which is an entry point into this application’s user library
code that interfaces directly with Zircon software.

The call_get_navs() function reproduces the behav-
ior of the inner loop in Figure 3a by (1) dispatching asyn-
chronous requests to remote zEngine compute servers, (2)
awaiting the delivery of all results, and (3) populating the
allres matrix. While each request is asynchronous, and
thus may execute in parallel in a cloud, thecall_get_navs
() function is synchronous from an R application per-
spective. This routine is implemented as a lightweight R
wrapper around a C++ function and uses Rcpp to map
between native R types (such as theallres matrix and
its constituent rows) and serializable C++ types (such as
std::vector<double>). The performance boost delivered by
the zEnabled implementation outlined in Figure 3b was dra-
matic, as shown in Section 5.

5 Analysis of Empirical Results

This section presents the results of the experiments
that quantify the benefits of parallelizing and distributing
the GAM Backtesting System application using the Zir-
con zNet-R software. All experiments were run on a
testbed containing 20 Intel-Xeon 1520 dual-series dual-
processor/dual-core (for a total of 80 cores) 1.86 GHz ma-
chines running on 64-bit Red-Hat Enterprise Linux 2.6 and
connected using Gigabit Ethernet. We dedicated one core
to run the client application that triggered requests to all
the zEngine computation servers. Three other cores on the

client processor were left idle since we did not want to run
computation servers on the same machine where the client
application ran. We therefore used a total of up to 76 cores
for zEngine computation servers.

Figure 4: Performance of zEnabled GAM Backtesting
System

We ran the distributed parallelized version of the GAM
Backtesting System application on four, eight, sixteen, and
nineteen multi-core machines and compared the perfor-
mance of the application in each of these configurations
with the performance of the baseline sequential application
implementation. Since each machine in the experiment con-
tained four cores, we started four instances of the GAM
Backtesting application server on each machine to leverage
all the four cores in each machine. The results of the exper-
iments shown in Figure 4 show how is the performance gain
was nearly linear with respect to the number of cores used
in each experiment configuration.

In particular, the time taken for the sequential applica-
tion to calibrate and analyze two models is 3,093 minutes.



Conversely, it took 40 minutes for the distributed parallel
version of the GAM Backtesting System to process and
to analyze the same two models, thereby demonstrating
substantial acceleration and efficiency. The performance
gains achieved by the distributed and parallel version of
the GAM Backtesting System are limited by the number
of cores/machines available to run these experiments in our
testbed. In large-scale deployments (e.g., clouds or data-
centers with hundreds of machines and thousands of cores),
there is no limit on the number of cores/machines that can
be used to deploy the parallelized GAM Backtesting appli-
cation. In such deployments, the GAM Backtesting Sys-
tem could be scaled transparently to utilize all the avail-
able cores and provide accelerations much higher than those
shown in Figure 4.

6 Concluding Remarks

This paper demonstrated how the Zircon adaptive ultra
high-performance computing platform has been integrated
with the R programming environment to accelerate complex
and compute-intensive R applications in competitive do-
mains, such as financial services, digital media, text mining,
and enterprise content management. Zircon software dra-
matically improves performance with little learning curve
and configuration effort, and run seamlessly over local-area
networks; wide-area networks; public, private, or hybrid
cloud deployments; and/or in dedicated data centers. The
results of our experiments show how Zircon software accel-
erated the performance of the GAM Backtesting system sig-
nificantly on a cluster of commodity multi-core machines.

Based on our experience parallelizing the GAM Back-
testing system, the following are the advantages that R
programmers would experience while parallelizing applica-
tions like the GAM Backtesting system:

• Programming with Zircon Software and the zNet-R
middleware is straightforward and application devel-
opers are shielded completely from tedious and error-
prone low-level network programming, distributed
programming, and parallel programming. This advan-
tage is significant for R users, who chose R to avoid
having to wrestle with these low-level programming
concerns. R users can thus focus on their application
logic related to data modeling, analysis, and visual-
ization, and leave the complex details related to dis-
tributed and network programming to Zircon software.

• The parallelization benefit that R users derive from
Zircon software is not just restricted to R applica-
tions. They could also parallelize analysis applica-
tions written in compiled languages, such as C and
C++, thereby providing an integrated environment for

accelerating complex and compute-intensive applica-
tions developed in compiled and interpreted languages.

• Zircon software is extremely efficient and scalable in
utilizing all the available processing cores of a high-
performance computing platform, as shown in the lin-
ear acceleration obtained by the GAM Backtesting
System.

7 Participants

Zircon Computing. Zircon Computing, LLC, is an in-
ternational software and services company based in Wayne,
New Jersey. Founded in 2005 by senior technologists from
the financial services industry, Zircon Computing is a lead-
ing provider of ultra high-performance middleware soft-
ware and services worldwide, and markets both directly to
enterprise clients and through an international network of
partners. Zircon Computing is privately held. For more in-
formation, please visithttp://www.zircomp.com.

Mascon Global Limited. Mascon Global Limited is an
IP-led, domain-centric technology solutions company with
development centers and business operations in the US, Eu-
rope, Asia and Mexico. Mascon Global Limited delivers
technology solutions across multiple industries and hold
leadership positions in the worlds of travel and hospitality,
finance, healthcare and life sciences, education, media and
telecommunications. Mascon Global Limited uses a com-
prehensive blend of products, services and a world-class de-
livery model to build, deploy and maintain technology solu-
tions that help our clients meet their most aggressive busi-
ness objectives. For more than 25 years, Mascon Global
Limited has been the innovation partner of choice for blue-
chip firms around the globe. For more information, please
visit http://www.mgl.com.

Garrett Asset Management. Garrett Asset Manage-
ment, LLC, is a systematic trader in the financial and com-
modity futures. The firm was founded in 2009 with em-
phasis in research in portfolio construction, position sizing,
and the development of technical trading models for differ-
ent market conditions. For more information, please visit
http://www.garrettassetmanagement.net.

References

[1] J. Balasubramanian, A. Mintz, A. Kaplan, G. Vilkov,
A. Gleyzer, A. Kaplan, R. Guida, P. Varshneya, and D. C.
Schmidt. Adaptive Parallel Computing for Large-scale Dis-
tributed and Parallel Applications. InProceedings of the 1st
International Workshop on Data Dissemination for Large
scale Complex Critical Infrastructures (DD4LCCI 2010),
Valencia, Spain, Apr. 2010.

[2] F. Buschmann, K. Henney, and D. C. Schmidt.Pattern-
Oriented Software Architecture: A Pattern Language for



Distributed Computing, Volume 4. Wiley and Sons, New
York, 2007.

[3] D. Eddelbuettel and R. Francois.RInside: C++ classes to
embed R in C++ applications, 2010. R package version
0.2.2.

[4] D. Eddelbuettel, R. Francois, with contributions by Si-
mon Urbanek, D. Reiss, D. B. based on code written dur-
ing 2005, and . by Dominick Samperi.Rcpp: Rcpp R/C++
interface package, 2010. R package version 0.8.0.

[5] I. T. Foster. Globus toolkit version 4: Software for service-
oriented systems.J. Comput. Sci. Technol., 21(4):513–520,
2006.

[6] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek,
and V. Sunderam.PVM: Parallel Virtual Machine A Users’
Guide and Tutorial for Networked Parallel Computing. MIT
Press, 1994.

[7] K. Hornik. The R FAQ, 2010. ISBN 3-900051-08-9.
[8] D. Kranzmuller, P. Kaczuk, and J. Dongarra. Recent ad-

vances in parallel virtual machine and message passing in-
terface.IJHPCA, 19(2):99–101, 2005.

[9] Message Passing Interface Forum.MPI: A Message-Passing
Interface Standard, Version 2.2. High Performance Comput-
ing Center Stuttgart (HLRS), September 2009.

[10] OpenMP Architecture Review Board. Openmp application
program interface. Specification, 2008.

[11] R Development Core Team.R: A Language and Environ-
ment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2010. ISBN 3-900051-07-0.

[12] M. Schmidberger, M. Morgan, D. Eddelbuettel, H. Yu,
L. Tierney, and U. Mansmann. State of the art in parallel
computing with r. Journal of Statistical Software, 31(1):1–
27, 8 2009.

[13] D. C. Schmidt and S. D. Huston.C++ Network Program-
ming, Volume 1: Mastering Complexity with ACE and Pat-
terns. Addison-Wesley, Boston, 2002.

[14] D. C. Schmidt and S. D. Huston.C++ Network Program-
ming, Volume 2: Systematic Reuse with ACE and Frame-
works. Addison-Wesley, Reading, Massachusetts, 2002.

[15] L. Tierney, A. J. Rossini, N. Li, and H. Sevcikova.snow:
Simple Network of Workstations, 2010. R package version
0.3-3.

[16] H. Yu. Rmpi: Interface (Wrapper) to MPI (Message-Passing
Interface), 2010. R package version 0.5-8.


