
 TECHNICAL NOTES

www.jet-messaging.com JMT Libraries & Web Services 1

JMT Libraries & Web Services
It’s all about types

Web Services

1
 are a vital component in today’s business landscape, particularly when one considers the growth of mobile

devices in B2C scenarios. Even in B2B, particularly where the “service consuming” side needs to blend together data
streams from a variety of providers, the use of Web Services is central to the delivery of applications or web content.
Often Web Services are referred to as APIs (Application Programming Interface) giving a revised, modern spin to
terminology that has been around for quite some time. In this TechNote we will use the terms API to mean concretely a
Web Service interface as it would be described, for example, in a Web Services Definition Language (WSDL)

2
 file.

Web Services (APIs)

In the WSDL description of the Services, the natural type landscape expected is that defined by Schema. If types in our API
were indeed those from a W3C compliant Schema

3
, what would be the outcome for the development team?

 consistent type landscape across both the application and API design

 no need to define the “meaning” of the types over and above the strictly business meaning

 valid data range of the types is already established and enforced

 focus can switch away from message-level implementation and more fully to the business logic and workflow,
blending the API calls to get the desired data composition and business outcome

However, using traditional semi-manual approaches it can prove impossible to embrace the necessary type landscape.
So how can this situation be resolved in the real world?

JMT Types

All JMT types start life as definitions in a Schema. Large international communities like ISO

4
, OpenTravel

5
, IATA

6
, HL7

7
 and

so on, spend considerable efforts bringing their respective Schemas into being to describe domain-specific business data
items. Traditionally, working with these Schema sets has been difficult for the implementer/developer. Significant
business involvement is required to get a clear understanding of the data definitions. In addition significant Schema
knowledge is needed by the developer when using the current semi-manual process of class construction.
On the other hand, JMT do away completely with these defective implementation processes. In particular we can
highlight:

 the type landscape matches fully the definitions in the associated Schema set

 the developer simply uses JMT types as any other type in their development environment

1
 http://www.w3schools.com/Webservices/default.asp

2
 http://www.w3.org/TR/wsdl

3
 http://www.w3.org/XML/Schema

4
 http://www.iso20022.org/

5
 http://www.opentravel.org/

6
 http://www.iata.org/Pages/default.aspx

7
 http://www.hl7.org/

http://www.jet-messaging.com/
http://www.w3schools.com/Webservices/default.asp
http://www.w3.org/TR/wsdl
http://www.w3.org/XML/Schema
http://www.iso20022.org/
http://www.opentravel.org/
http://www.iata.org/Pages/default.aspx
http://www.hl7.org/

www.jet-messaging.com JMT Libraries & Web Services 2

 full documentation of the types and related Schema entities is provided

 validation of data, whether it appears programmatically or via a UI, is in-the-box for all the JMT types – data quality is
assured.

Schemas and Web Services in the Real World

Schemas to be used in a web application scenario are often accompanied by a set of WSDL

8
 files. While a Schema is a

description of the data within the business domain (describes what the core entities are in the business domain), the WSDL
provides a specification of the operations that can be performed on that data (what actions can be done using the data
from the business domain). In a real business case both files are provided by a standardization institution or a 3

rd
 party

provider and cannot be subject to change. In such cases binding the data (schemas) with the operations (WSDL) from an
application perspective may be a challenging task and require the consumer to adopt a specific development technique
called Web Service Contract First (WSCF).

The problem that a development team or business entity faces, which requires them to adopt a WSCF technique, is how to
communicate with a 3

rd
 party service provider using the specific schema set and the WSDL file. The real challenge is how to

create an application that is reliable and (most importantly) easy to maintain. Because of the sheer size of the schemas and
WSDL files as well as their complexity, a solution that is based on generated code may not meet these requirements.

The Microsoft .NET Framework, as well as the community, provides some out-of-the-box solutions to tackle this problem.
Unfortunately, none of them is satisfactory. The two most widely used solutions are Service Model Metadata Utility Tool
(Svcutil.exe)

9
 provided with the Microsoft Windows SDK, and a community-driven tool from Thinktecture, WSCF.blue

10
.

We will now look at the advantages and limitation of both tools.

Limitations of the SvcUtil application stems from its relation to the Xsd.exe tool, also in the Microsoft Windows SDK, over
which it forms a wrapper. All the issues encountered when using Xsd.exe are still present when using SvcUtil. By adopting
this tool to generate code from a schema set, one ends up with an application that contains large amount of generated
code which doesn’t actually match the original schema data definitions at all. More importantly, code reusability in such a
solution is really low or even non-existent. In purely technical terms – in some cases it’s not possible to reuse an existing
type library. In the .Net world, however, Xsd.exe has the main advantage of simply being the “standard” tool in the SDK.

WSCF.blue which is provided by the community solves some of the problems described in the previous paragraph. Yet in a
complex scenario (using a complicated schema set provided by one of the standardization organizations) one would be,
again, left with hundreds of lines of generated code which leads to a maintenance nightmare. The advantage, if it can
indeed be described as one in this case, is that the tool codebase is open to adaption. Such a step is not particularly
attractive though for projects who do not want to be diverted away from their core business development concerns.

Jmt.Wscf to the Rescue

To solve the problems outlined above and overcome limitations of the existing tools; Jet Messaging Technologies proposes
a solution that delivers an elegant, complete yet maintainable solution. Along with an existing range of type libraries (see
jet-messaging.com/products for a comprehensive list) that cover schemas from various providers, we propose a simple and
robust extension for the Microsoft Visual Studio development environment

11
. The aim of extension is to provide a

mechanism to create Web Service client code, bringing together the data and operational description part, XSD and
WSDL, with a generated type landscape, the JMT dll, that is both easy to maintain and covers the complete landscape of a
particular schema set. The User Interface (UI) of the extension is presented in below Figure 1.

8
 WSDL – Web Services Definition Language, http://www.w3.org/TR/wsdl

9
 http://msdn.microsoft.com/en-us/library/aa347733(v=vs.110).aspx

10
 http://wscfblue.codeplex.com

11
 http://msdn.microsoft.com/en-us/library/bb165336.aspx

http://www.jet-messaging.com/
http://www.jet-messaging.com/products/
http://www.w3.org/TR/wsdl
http://msdn.microsoft.com/en-us/library/aa347733(v=vs.110).aspx
http://wscfblue.codeplex.com/
http://msdn.microsoft.com/en-us/library/bb165336.aspx

www.jet-messaging.com JMT Libraries & Web Services 3

Figure 1 The User Interface of the JMT WSCF extension

The Visual Studio extension shown above works in the context of a WSDL file attached to a Visual Studio project (the next
section will describe this in more detail). Please note that it discovers any JMT Library that is already referenced by the
project and invites the user to select one to be used in its operation. The only responsibility of the user is to provide the
desired namespace as well as the name of the output file.

The “Generate web service” button creates a set of classes that use types from the referenced JMT Library. These classes
represent a fully functional web service client that leverages the Microsoft WCF

12
 technology. No further modifications are

needed to implement the WS client. The only task for the developer is to implement the business logic that operates on the
data provided by the server and responds to it accordingly.

In the following section we will go through an example that shows how the extension along with the JMT Type Library can
be used to provide a solution for a typical business scenario.

An Example Generation

An example to illustrate the benefits of using the JMT Type Library in conjunction with the Jmt.Wscf Visual Studio
extension, is now presented. The (mythical) functional requirement is to implement client code that could allow
communication via a web service using SOAP messages that adhere to data definitions in the schemas. This will form the
basis of the discussion in this section.

This example will use the Schema OTA_AirAvailRQ.xsd file from the OpenTravel public delivery. We also use a
simplified WSDL file for the purposes of demonstrating how to use the JMT type libraries in a Web Service scenario.

What is required is to bind the type landscape in the JMT Library with the WSDL and generate appropriate client-side
starter code for invoking supported services. As was mentioned above, this cannot be achieved by using SvcUtil.exe or
alternatives such as WCSF.Blue, so we use Jmt.Wscf to provide the solution. Our example solution looks as follows in
Figure 2:

12

 WCF - http://msdn.microsoft.com/en-us/library/vstudio/ms735119(v=vs.90).aspx

http://www.jet-messaging.com/
http://msdn.microsoft.com/en-us/library/vstudio/ms735119(v=vs.90).aspx

www.jet-messaging.com JMT Libraries & Web Services 4

Figure 2 OpenTravel Schemas and JMT Library

Elements of the Example
The following parts comprise our example solution:

 Visual Studio extension

 A WSDL file (FastBookService.wsdl) – that describes the WS operations and their parameters. In our example one is
described in more detail below (see “The WSDL file”).

 A set of XSD files – describes data that is used by the WS operations. In our example we have a hierarchy of schema
files which start with the FastBookBinding.xsd schema which in turn references the other schemas.

 JMT Library – a library of classes that reflect the data definitions in the schemas as strongly-typed classes. In this
particular example a library from the OpenTravel OTA V2014A specification, the Air dictionary, is used.

We will describe each of the elements in detail in the following sections.

The WSDL File

The WSDL file used in this example is a simplified version of the FastBookService.wsdl file that can be found in the
OpenTravel specification. In particular, this simplified WSDL declares one operation, CheckAvailability that involves
two messages, OTA_AirAvailRQ, the (input) request and, OTA_AirAvailRS, the (output) response.

http://www.jet-messaging.com/

www.jet-messaging.com JMT Libraries & Web Services 5

Figure 3 FastBookService Web Service Definition file (WSDL)

A number of points should be noted about this WSDL:

 line 8: the schema file (FastBookBinding.xsd) that contains the definitions of the data contract messages, is imported
to the document

 lines 14-19: two messages (which transform to message contracts in the .NET world) are defined. Note that they use
types defined in the Schema by using the “ota:” namespace prefix

 lines 23-26: an operation (CheckAvailabiltyRequest) is defined

 lines 45-50: the FastBookService service is defined

It is important to emphasize here that all aspects of the WSDL file are covered either by the JMT Types Library (including
all the types imported from the FastBookBinding.xsd schema) or the Jmt.Wscf extension (generation of classes that
represent the message contract as well as the code of the web service client itself). So here we see the binding of a
generated type landscape with a WSDL file that references appropriate schemas and their contained types (by definition).

The Schema

In the previous WSDL file Figure 3 it can be seen that one of the declared messages, named
CheckAvailabilityRequest, has a type which is defined in the Schema (via the namespace prefix ota:)
FastBookBinding.xsd with a concrete type of OTA_HotelAvailRQ.
Currently, a developer would employ the semi-manual process mentioned above, using tools like Xsd.exe, to produce

http://www.jet-messaging.com/

www.jet-messaging.com JMT Libraries & Web Services 6

types such as this from the Schema definition. This approach has a number of very serious drawbacks:

 hard to scope the amount of work involved for all the types required

 processing a schema containing message-related data definitions, results in classes that are very poor reflections of
the corresponding definition, important aspects such as documentation, type structure, optional/mandatory
indication and min/max-Occurs values are all missing

 the validation of data must be coded manually for all types using the Schema definitions as a guide (not forgetting the
W3C Primitive types, of course)

 the manual parts need to be maintained should the Schema definitions change

 the work of type development is a serious distraction from the work on the business logic and use cases in the
application or service being developed

It should be remarked here that it is a misunderstanding to see the need for types to be restricted just to the top-level
message, CheckAvailabilityRequest in this example. Schema types operate like icebergs in that to get a genuine
representation of a single message type, many, many more types must be written in the development environment.
If we now look for our type in the Schema OTA_AirAvailRQ.xsd, we see as below in Figure 4:

Figure 4 OTA_AirAvailRQ Message Definition

Here we can start to get a sense of the iceberg quality of Schema types.
Within OTA_AirAvailRQ, the type we are interested in for our service message, we can encounter types such as:

 POS_Type, OriginDestinationInformation
these are “complex” types, appearing as xs:element entities, defined in additional Schemas and which contain further
type collections. These too contain further types, sometimes in complicated structural forms such as xs:sequence,
xs:choice, xs:union etc. as well as extensions and restrictions. These may also contain “extension” types
(TPA_Extensions in OpenTravel terms) which allow for custom data to be introduced into messages in a structured
way

 StringLength1to128
this is also defined in an additional Schema and represents a so-called SimpleType. This type contains data validation

http://www.jet-messaging.com/

www.jet-messaging.com JMT Libraries & Web Services 7

as well as restrictions/restriction collections and eventually, in its XML form, will hold an appropriate “value”

 xs:dateTime, xs:language and xs:positiveInteger
these are types that are defined by the W3C consortium themselves, the so-called XSD Primitive set. In this case they
represent a date/time value (in a specific format), a “language” identifier and an Integer whose value must be positive
to be valid. For JMT these special types are also generated just as any other, matching their W3C specification.

The JMT Library
For the purpose of this TechNote we will use the OpenTravel V2014A Air dictionary library, which can be downloaded from
our website.

Generating the Web Service Client Code

Once the Visual Studio project has been set up (as shown above) and the Jmt.Wscf extension downloaded and installed, it
is possible to generate the client code for a web service.
Proceed as follows; right click on the WSDL file and select the Generate Web Service menu item, as shown below:

Figure 5 Visual Studio context menu action for running the JMT WSCF extension

Next enter the target namespace and the name of the output file in the Generate web service code from WSDL dialog as
shown below. It is also possible to choose:

 whether you would like to add a reference to the generated file in the current Visual Studio project

 if any existing file with the same name should be overwritten.

Figure 6 The user interface of the JMT WSCF extension

http://www.jet-messaging.com/
http://www.jet-messaging.com/products/

www.jet-messaging.com JMT Libraries & Web Services 8

Click the Generate web service button. A confirmation dialog is displayed indicating that the web service client code has
been successfully generated.

Figure 7 Information window after successful code generation

Before we dive deeper into the technical aspects of the generated code, let’s recap the whole process and what was
actually done by the extension:

 The Visual Studio extension combines the information about the web service (WSDL file) and the data used by it (a set
of XSD files) and generates C# classes that reflect both of these.

 Instead of generating hundreds of lines of data contract classes the extension simply discovers types in the JMT Type
Library referenced by the Visual Studio project.

 What is generated is purely infrastructural code that allows an application to communicate with a web service. The
only missing part is the actual business logic code that implements the business functional requirements.

The Generated Code

For our example, the file FastBookService.cs is written and injected into the Visual Studio project. A fragment of this
C# file is shown below Figure 8.

Figure 8 Generated web service client code (fragment)

Note that this represents complete source code of a web service client – for our particular case the file is roughly 100 lines of

http://www.jet-messaging.com/

www.jet-messaging.com JMT Libraries & Web Services 9

code. The source code for a similar web service generated by the WSCF.blue or simillar tooling would contain around
80.000 lines of generated code (code which would also have the key deficiencies noted earlier).

The file shown above is (by design) divided into two parts. The first part is the web service code client that contains the
following classes:

 IFastBookPortType – the interface (contract definition) of the web service.

 CheckAvailabilityRequest and CheckAvailabilityResponse – message contract classes that represent the messages
described in the WSDL file.

 FastBookPortTypeClient – a class that implements the interface and inherits from the WCF’s ClientBase infrastructure
class. This is the actual web service client code where the logic that covers the business requirement needs to be
implemented.

Taking a closer look at one of the message contract classes (CheckAvailabilityRequest) Figure 9,

Figure 9 Generated message contract class (fragment)

it should be noted that the message contract class is the only one that is generated. The whole inner structure (the
OTA_AirAvailRQ property of the OTA_AirAvailRQ type) comes from the referenced JMT OpenTravel Types Library
(Jmt.OpenTravel.OTA.V2014A.Air). There is no further message-related implementation aspects to be done by the
developer who can concentrate on implementing the business logic inside the FastBookPortTypeClient web service
client class.
The second part of the file is as shown below in Figure 10.

Figure 10 Generated infrastructure class (fragment)

These three classes are purely infrastructural and their role is not described further.

It’s also worth noting that the configuration file of the project was changed so that an endpoint referenced in the WSDL file
as well as the previously mentioned infrastructural classes are registered within the WCF runtime. These modifications are
shown below in Figure 11.

http://www.jet-messaging.com/

www.jet-messaging.com JMT Libraries & Web Services 10

Figure 11 Application configuration file with additional settings for the web service

Running the example
To provide an opportunity to see the generated code in action we have included a sample server in the source code of the
example. The Jmt.Wscf.Test.Server project contains an implementation of a simple server that leverages WCF
technology. An important point regarding this implementation is that it doesn’t use any JMT Library types whatsoever. For
simplicity of the example the server code operates on “pure” XML but it could have been generated using one of the
technologies available on the market.

The data contract classes in the FastBookService.cs file provide a way to test the functionality. Although they don’t reflect
the whole type landscape in the schema and are not intended to represent production code, they nonetheless provide a
realistic test of the approach. We use it for presentational purpose to show that a web service implementation that uses
JMT Type Library is not limited in any way.

Client Code
The FastBookServiceTest class located in the Jmt.Wscf.Test.Client project contains one test method. The sole
responsibility of this is to call the sample server and check the response. The code that can be seen in below Figure 12
instantiates a web service proxy class (FastBookPortTypeClient), creates and populates an OTA_AirAvailRQ
message and finally calls the web service.

http://www.jet-messaging.com/

www.jet-messaging.com JMT Libraries & Web Services 11

Figure 12 Client-side implementation of the web service example

Server Code
The web service implementation on the server side creates and populates a response message
(CheckAvailabilityResponse) and returns it to the client. Please note that the server implementation doesn’t use any
specific library to generate the SOAP response but rather creates and returns a raw XML message. In a real-world scenario
the server code could be implemented using any technology (including .NET and Java framework and libraries).

http://www.jet-messaging.com/

www.jet-messaging.com JMT Libraries & Web Services 12

Figure 13 Server-side XML reply message

Running the unit test proves that the communication between the client (which uses JMT Type Library and a proxy class
generated by the JMT Extension) and the server (that uses any technology) works. You may see how the response returned
by the server was deserialized and mapped to corresponding schema type from JMT Type Library:

Figure 14 Result of running the web service with a debugger attached

http://www.jet-messaging.com/

www.jet-messaging.com JMT Libraries & Web Services 13

Writing an Application

The code generated by the Jmt.Wscf Visual Studio extension is intended to be a scaffolding code that you can take and
use. Although it is fully functional and can be used in a production environment there are a number of aspects you might
want to change:

 In terms of code readability it would be preferred to split the generated file, moving each class to a separate file.

 In terms of project structure it is advised to separate the contract (the service interface and the message contract
classes) from the implementation (the service implementation which derives from the ClientBase class).

 In terms of class dependencies remove the inheritance hierarchy in the service implementation in order to use an
inversion of control mechanism to resolve dependencies and to automate the process of proxy creation (see Castle
Windsor

13
 or Microsoft Unity

14
).

 In terms of maintainability move all generated classes which take part in the creation of the SOAP message
(JmtXmlSerializerFormatterBehavior, JmtXmlSerializerFormatter and
JmtXmlSerializerEndpointBehavior) to a separate infrastructure project.

Benefits of this Solution
To summarize, the main advantages that come with using the Jmt.Wscf extension in conjunction with an appropriate JMT
Type Library, are as follows:

 Projects and developers can take fully advantage of the strong type, data validating libraries from JMT.

 The initial creation of a Web service client which supports the full range of standard operational messages (as defined in
a Schema and WSDL files) is trivial.

 Projects can now process standard messages leaving special needs to edge cases where, as is the case for OpenTravel,
use can be made of the clearly defined extension points in messages for handling such “one off” partner agreements.

 Developers are empowered to do really fast and robust contract-first development in response to complex business
needs.

 The Visual Studio solution has less code which leads to project with a significantly higher maintainability level.

 Projects can use a consistent and complete landscape of types throughout.

The Jet Messaging Technologies team hopes that the solution proposed here will bring major relief to developers faced
with the task of producing a Web Service solution in the context of International Schema sets. Liberating developers from
writing mundane boilerplate code, particularly when it has major deficiencies, allowing them to concentrate on the
business value parts of the project, will really bring a major win.

13

 http://www.castleproject.org/projects/windsor/
14

 http://msdn.microsoft.com/en-us/library/ff647202.aspx

http://www.jet-messaging.com/
http://www.castleproject.org/projects/windsor/
http://msdn.microsoft.com/en-us/library/ff647202.aspx

 TECHNICAL NOTES

www.jet-messaging.com JMT Libraries & Web Services 1

© 12/2014 Jet Messaging Technologies AG

All rights reserved.

Jet Messaging Technologies AG

Rotwandstrasse 35, 8004 Zurich,

Switzerland

Phone +41 79 303 05 63

Email info@jet-messaging.com

http://www.jet-messaging.com/

